基于群智能的一维生物医学信号特征工程植物根系算法

Q3 Engineering
Rui Gong, K. Hase
{"title":"基于群智能的一维生物医学信号特征工程植物根系算法","authors":"Rui Gong, K. Hase","doi":"10.46604/aiti.2023.11169","DOIUrl":null,"url":null,"abstract":"The classification accuracy of one-dimensional (1D) biomedical signals is limited due to the lack of independence of the extracted features. To address this shortcoming, the study applies a swarm intelligence algorithm based on plant root systems (PRSs) to feature engineering. Some basic features of 1D biomedical signals are integrated into a digitized soil, and a root matrix is generated from this digitized soil and the PRS algorithm. The PRS features are extracted from the root matrix and used to classify the basic features. Following classification with the same biomedical signals and classifier, the accuracy of the added PRS set is generally higher than that of the base set. The result shows that the proposed algorithm can expand the application of 1D biomedical signals to include more biomedical signals in classification tasks for clinical diagnosis.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":"abs/2108.00214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Plant Root System Algorithm Based on Swarm Intelligence for One-dimensional Biomedical Signal Feature Engineering\",\"authors\":\"Rui Gong, K. Hase\",\"doi\":\"10.46604/aiti.2023.11169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification accuracy of one-dimensional (1D) biomedical signals is limited due to the lack of independence of the extracted features. To address this shortcoming, the study applies a swarm intelligence algorithm based on plant root systems (PRSs) to feature engineering. Some basic features of 1D biomedical signals are integrated into a digitized soil, and a root matrix is generated from this digitized soil and the PRS algorithm. The PRS features are extracted from the root matrix and used to classify the basic features. Following classification with the same biomedical signals and classifier, the accuracy of the added PRS set is generally higher than that of the base set. The result shows that the proposed algorithm can expand the application of 1D biomedical signals to include more biomedical signals in classification tasks for clinical diagnosis.\",\"PeriodicalId\":52314,\"journal\":{\"name\":\"Advances in Technology Innovation\",\"volume\":\"abs/2108.00214 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/aiti.2023.11169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2023.11169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

由于提取的特征缺乏独立性,限制了一维生物医学信号的分类精度。为了解决这一问题,本研究将基于植物根系的群体智能算法应用于特征工程。将一维生物医学信号的一些基本特征整合到数字化土壤中,利用数字化土壤和PRS算法生成根矩阵。从根矩阵中提取PRS特征,用于对基本特征进行分类。在使用相同的生物医学信号和分类器进行分类后,增加的PRS集的准确率一般高于基集。结果表明,该算法可以扩大一维生物医学信号的应用范围,将更多的生物医学信号纳入到临床诊断的分类任务中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Plant Root System Algorithm Based on Swarm Intelligence for One-dimensional Biomedical Signal Feature Engineering
The classification accuracy of one-dimensional (1D) biomedical signals is limited due to the lack of independence of the extracted features. To address this shortcoming, the study applies a swarm intelligence algorithm based on plant root systems (PRSs) to feature engineering. Some basic features of 1D biomedical signals are integrated into a digitized soil, and a root matrix is generated from this digitized soil and the PRS algorithm. The PRS features are extracted from the root matrix and used to classify the basic features. Following classification with the same biomedical signals and classifier, the accuracy of the added PRS set is generally higher than that of the base set. The result shows that the proposed algorithm can expand the application of 1D biomedical signals to include more biomedical signals in classification tasks for clinical diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信