{"title":"一类依赖于两个参数的分数边值问题的多重性结果","authors":"N. Nyamoradi","doi":"10.4064/AP109-1-5","DOIUrl":null,"url":null,"abstract":"We prove the existence of at least three solutions to the following fractional boundary value problem: { − d dt ( 1 2 0 D−σ t (u ′(t)) + 1 2 t D−σ T (u ′(t)) ) − λβ(t)f(u(t))− μγ(t)g(u(t)) = 0, a.e. t ∈ [0, T ], u(0) = u(T ) = 0, where 0D −σ t and tD −σ T are the left and right Riemann–Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446–7454].","PeriodicalId":38616,"journal":{"name":"Nonlinear Studies","volume":"20 1","pages":"57-72"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4064/AP109-1-5","citationCount":"8","resultStr":"{\"title\":\"Multiplicity results for a class of fractional boundary value problems depending on two parameters\",\"authors\":\"N. Nyamoradi\",\"doi\":\"10.4064/AP109-1-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of at least three solutions to the following fractional boundary value problem: { − d dt ( 1 2 0 D−σ t (u ′(t)) + 1 2 t D−σ T (u ′(t)) ) − λβ(t)f(u(t))− μγ(t)g(u(t)) = 0, a.e. t ∈ [0, T ], u(0) = u(T ) = 0, where 0D −σ t and tD −σ T are the left and right Riemann–Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446–7454].\",\"PeriodicalId\":38616,\"journal\":{\"name\":\"Nonlinear Studies\",\"volume\":\"20 1\",\"pages\":\"57-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4064/AP109-1-5\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/AP109-1-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AP109-1-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8
摘要
证明了下列分数边值问题{−d dt (1 2 0 d−σ t (u ' (t)) + 1 2 t d−σ t (u ' (t))−λβ(t)f(u(t))−μγ(t)g(u(t)) = 0, a.e. t∈[0,t], u(0) = u(t) = 0,其中0D−σ t和tD−σ t分别是0阶≤σ < 1的左、右Riemann-Liouville分数积分。该方法基于Ricceri [B]最近提出的三个临界点定理。Ricceri,三临界点定理的进一步改进,非线性学报,74(2011),7446-7454。
Multiplicity results for a class of fractional boundary value problems depending on two parameters
We prove the existence of at least three solutions to the following fractional boundary value problem: { − d dt ( 1 2 0 D−σ t (u ′(t)) + 1 2 t D−σ T (u ′(t)) ) − λβ(t)f(u(t))− μγ(t)g(u(t)) = 0, a.e. t ∈ [0, T ], u(0) = u(T ) = 0, where 0D −σ t and tD −σ T are the left and right Riemann–Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446–7454].