基于小单元对的Stokes问题的混合有限体积法

Hongtao Yang, Yonghai Li
{"title":"基于小单元对的Stokes问题的混合有限体积法","authors":"Hongtao Yang, Yonghai Li","doi":"10.4208/ijnam2023-1006","DOIUrl":null,"url":null,"abstract":". In this paper, we present and analyze MINI Mixed (cid:12)nite volume element methods (MINI-FVEM) for Stokes problem on triangular meshes. The trial spaces for velocity and pressure are chosen as MINI element pair, and the test spaces for velocity and pressure are taken as the piecewise constant function spaces on the respective dual grid. It is worth noting that the bilinear form derived from the gradient operator and the bilinear form derived from the divergence are unsymmetric. With the help of two new transformation operators, we establish the equivalence of bilinear forms for gradient operator between (cid:12)nite volume methods and (cid:12)nite element methods, and the equivalence of bilinear forms for divergence operator between (cid:12)nite volume methods and (cid:12)nite element methods, so the inf-sup conditions are obtained. By the element analysis methods, we give the positive de(cid:12)niteness of bilinear form for Laplacian operator. Based on the stability, convergence analysis of schemes are established. Numerical experiments are presented to illustrate the theoretical results.","PeriodicalId":90552,"journal":{"name":"International journal of numerical analysis & modeling. Series B","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Mixed Finite Volume Methods for Stokes Problem Based on Mini Element Pair\",\"authors\":\"Hongtao Yang, Yonghai Li\",\"doi\":\"10.4208/ijnam2023-1006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we present and analyze MINI Mixed (cid:12)nite volume element methods (MINI-FVEM) for Stokes problem on triangular meshes. The trial spaces for velocity and pressure are chosen as MINI element pair, and the test spaces for velocity and pressure are taken as the piecewise constant function spaces on the respective dual grid. It is worth noting that the bilinear form derived from the gradient operator and the bilinear form derived from the divergence are unsymmetric. With the help of two new transformation operators, we establish the equivalence of bilinear forms for gradient operator between (cid:12)nite volume methods and (cid:12)nite element methods, and the equivalence of bilinear forms for divergence operator between (cid:12)nite volume methods and (cid:12)nite element methods, so the inf-sup conditions are obtained. By the element analysis methods, we give the positive de(cid:12)niteness of bilinear form for Laplacian operator. Based on the stability, convergence analysis of schemes are established. Numerical experiments are presented to illustrate the theoretical results.\",\"PeriodicalId\":90552,\"journal\":{\"name\":\"International journal of numerical analysis & modeling. Series B\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of numerical analysis & modeling. Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/ijnam2023-1006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of numerical analysis & modeling. Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/ijnam2023-1006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 本文提出并分析了求解三角形网格上Stokes问题的MINI- Mixed (cid:12)单元法。选取速度和压力试验空间作为MINI单元对,速度和压力试验空间作为各自双网格上的分段常数函数空间。值得注意的是,由梯度算子导出的双线性形式和由散度导出的双线性形式是不对称的。利用两个新的变换算子,建立了(cid:12)尼体积法与(cid:12)尼单元法之间梯度算子的双线性等价形式,以及(cid:12)尼体积法与(cid:12)尼单元法之间散度算子的双线性等价形式,从而得到了相互支持的条件。利用元素分析方法,给出了拉普拉斯算子双线性形式的正de(cid:12)性。基于稳定性,建立了方案的收敛性分析。通过数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Mixed Finite Volume Methods for Stokes Problem Based on Mini Element Pair
. In this paper, we present and analyze MINI Mixed (cid:12)nite volume element methods (MINI-FVEM) for Stokes problem on triangular meshes. The trial spaces for velocity and pressure are chosen as MINI element pair, and the test spaces for velocity and pressure are taken as the piecewise constant function spaces on the respective dual grid. It is worth noting that the bilinear form derived from the gradient operator and the bilinear form derived from the divergence are unsymmetric. With the help of two new transformation operators, we establish the equivalence of bilinear forms for gradient operator between (cid:12)nite volume methods and (cid:12)nite element methods, and the equivalence of bilinear forms for divergence operator between (cid:12)nite volume methods and (cid:12)nite element methods, so the inf-sup conditions are obtained. By the element analysis methods, we give the positive de(cid:12)niteness of bilinear form for Laplacian operator. Based on the stability, convergence analysis of schemes are established. Numerical experiments are presented to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信