各向异性非均质边界控制n维波动方程的保结构空间离散化数值分析

Ghislain Haine, D. Matignon, A. Serhani
{"title":"各向异性非均质边界控制n维波动方程的保结构空间离散化数值分析","authors":"Ghislain Haine, D. Matignon, A. Serhani","doi":"10.4208/ijnam2023-1005","DOIUrl":null,"url":null,"abstract":"The anisotropic and heterogeneous N-dimensional wave equation, controlled and observed at the boundary, is considered as a port-Hamiltonian system. The recent structure-preserving Partitioned Finite Element Method is applied, leading directly to a finite-dimensional port-Hamiltonian system, and its numerical analysis is done in a general framework, under usual assumptions for finite element. Compatibility conditions are then exhibited to reach the best trade off between the convergence rate and the number of degrees of freedom for both the state error and the Hamiltonian error. Numerical simulations in 2D are performed to illustrate the optimality of the main theorems among several choices of classical finite element families.","PeriodicalId":90552,"journal":{"name":"International journal of numerical analysis & modeling. Series B","volume":"abs/2006.15032 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled N-dimensional wave equation as port-Hamiltonian system\",\"authors\":\"Ghislain Haine, D. Matignon, A. Serhani\",\"doi\":\"10.4208/ijnam2023-1005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The anisotropic and heterogeneous N-dimensional wave equation, controlled and observed at the boundary, is considered as a port-Hamiltonian system. The recent structure-preserving Partitioned Finite Element Method is applied, leading directly to a finite-dimensional port-Hamiltonian system, and its numerical analysis is done in a general framework, under usual assumptions for finite element. Compatibility conditions are then exhibited to reach the best trade off between the convergence rate and the number of degrees of freedom for both the state error and the Hamiltonian error. Numerical simulations in 2D are performed to illustrate the optimality of the main theorems among several choices of classical finite element families.\",\"PeriodicalId\":90552,\"journal\":{\"name\":\"International journal of numerical analysis & modeling. Series B\",\"volume\":\"abs/2006.15032 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of numerical analysis & modeling. Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/ijnam2023-1005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of numerical analysis & modeling. Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/ijnam2023-1005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在边界处控制和观测的各向异性非均质n维波动方程被认为是一个port- hamilton系统。采用最新的保结构分割有限元方法,直接得到一个有限维的端口-哈密顿系统,并在一般框架下,在通常的有限元假设下对其进行数值分析。然后展示相容条件,以达到状态误差和哈密顿误差的收敛速率和自由度数量之间的最佳折衷。通过二维数值模拟,说明了几种经典有限元族选择中主要定理的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled N-dimensional wave equation as port-Hamiltonian system
The anisotropic and heterogeneous N-dimensional wave equation, controlled and observed at the boundary, is considered as a port-Hamiltonian system. The recent structure-preserving Partitioned Finite Element Method is applied, leading directly to a finite-dimensional port-Hamiltonian system, and its numerical analysis is done in a general framework, under usual assumptions for finite element. Compatibility conditions are then exhibited to reach the best trade off between the convergence rate and the number of degrees of freedom for both the state error and the Hamiltonian error. Numerical simulations in 2D are performed to illustrate the optimality of the main theorems among several choices of classical finite element families.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信