孤立超曲面奇点的新$k$-th Yau代数及弱torelli型定理

IF 0.6 3区 数学 Q3 MATHEMATICS
Naveed Hussain, S. Yau, Huaiqing Zuo
{"title":"孤立超曲面奇点的新$k$-th Yau代数及弱torelli型定理","authors":"Naveed Hussain, S. Yau, Huaiqing Zuo","doi":"10.4310/mrl.2022.v29.n2.a7","DOIUrl":null,"url":null,"abstract":"Let V be a hypersurface with an isolated singularity at the origin defined by the holomorphic function f : ( C n , 0) → ( C , 0). The Yau algebra L ( V ) is defined to be the Lie algebra of derivations of the moduli algebra A ( V ) := O n / ( f, ∂f∂x 1 , · · · , ∂f∂x n ), i.e., L ( V ) = Der( A ( V ) , A ( V )). It is known that L ( V ) is a finite dimensional Lie algebra and its dimension λ ( V ) is called Yau number. In this paper, we introduce a new series of Lie algebras, i.e., k -th Yau algebras L k ( V ), k ≥ 0, which are a generalization of Yau algebra. L k ( V ) is defined to be the Lie algebra of derivations of the k th moduli algebra A k ( V ) := O n / ( f, m k J ( f )) , k ≥ 0, i.e., L k ( V ) = Der( A k ( V ) , A k ( V )), where m is the maximal ideal of O n . The k -th Yau number is the dimension of L k ( V ) which we denote as λ k ( V ). In particular, L 0 ( V ) is exactly the Yau algebra, i.e., L 0 ( V ) = L ( V ) , λ 0 ( V ) = λ ( V ). These numbers λ k ( V ) are new numerical analytic invariants of singularities. In this paper we obtain the weak Torelli-type theorems of simple elliptic singularities using Lie algebras L 1 ( V ) and L 2 ( V ). We shall also characterize the simple singularities completely using L 1 ( V ).","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"New $k$-th Yau algebras of isolated hypersurface singularities and weak Torelli-type theorem\",\"authors\":\"Naveed Hussain, S. Yau, Huaiqing Zuo\",\"doi\":\"10.4310/mrl.2022.v29.n2.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let V be a hypersurface with an isolated singularity at the origin defined by the holomorphic function f : ( C n , 0) → ( C , 0). The Yau algebra L ( V ) is defined to be the Lie algebra of derivations of the moduli algebra A ( V ) := O n / ( f, ∂f∂x 1 , · · · , ∂f∂x n ), i.e., L ( V ) = Der( A ( V ) , A ( V )). It is known that L ( V ) is a finite dimensional Lie algebra and its dimension λ ( V ) is called Yau number. In this paper, we introduce a new series of Lie algebras, i.e., k -th Yau algebras L k ( V ), k ≥ 0, which are a generalization of Yau algebra. L k ( V ) is defined to be the Lie algebra of derivations of the k th moduli algebra A k ( V ) := O n / ( f, m k J ( f )) , k ≥ 0, i.e., L k ( V ) = Der( A k ( V ) , A k ( V )), where m is the maximal ideal of O n . The k -th Yau number is the dimension of L k ( V ) which we denote as λ k ( V ). In particular, L 0 ( V ) is exactly the Yau algebra, i.e., L 0 ( V ) = L ( V ) , λ 0 ( V ) = λ ( V ). These numbers λ k ( V ) are new numerical analytic invariants of singularities. In this paper we obtain the weak Torelli-type theorems of simple elliptic singularities using Lie algebras L 1 ( V ) and L 2 ( V ). We shall also characterize the simple singularities completely using L 1 ( V ).\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2022.v29.n2.a7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n2.a7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

让V是一个超曲面与孤立奇点在原点定义的全纯函数f: (C n, 0)→(C, 0)瑶族代数L (V)的李代数定义派生的模代数(V): = O n (f,∂f /∂x 1 , · · · , ∂f∂x n),即L (V) = Der ((V), (V))。已知L (V)是有限维李代数,其维数λ (V)称为丘数。本文引入了一类新的李代数,即k - Yau代数lk (V), k≥0,它们是Yau代数的推广。L k (V)定义为第k个模代数A k (V)的导数的李代数:= O n / (f, m k J (f)), k≥0,即L k (V) = Der(A k (V), A k (V)),其中m为O n的极大理想。第k个数是L k (V)的维数,我们记作λ k (V)。特别地,l0 (V)正是Yau代数,即l0 (V) = L (V), λ 0 (V) = λ (V)。这些数字λ k (V)是新的奇异性数值解析不变量。本文利用李代数l1 (V)和l2 (V)得到了简单椭圆奇点的弱torelli型定理。我们还将用l1 (V)完整地描述简单奇异点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New $k$-th Yau algebras of isolated hypersurface singularities and weak Torelli-type theorem
Let V be a hypersurface with an isolated singularity at the origin defined by the holomorphic function f : ( C n , 0) → ( C , 0). The Yau algebra L ( V ) is defined to be the Lie algebra of derivations of the moduli algebra A ( V ) := O n / ( f, ∂f∂x 1 , · · · , ∂f∂x n ), i.e., L ( V ) = Der( A ( V ) , A ( V )). It is known that L ( V ) is a finite dimensional Lie algebra and its dimension λ ( V ) is called Yau number. In this paper, we introduce a new series of Lie algebras, i.e., k -th Yau algebras L k ( V ), k ≥ 0, which are a generalization of Yau algebra. L k ( V ) is defined to be the Lie algebra of derivations of the k th moduli algebra A k ( V ) := O n / ( f, m k J ( f )) , k ≥ 0, i.e., L k ( V ) = Der( A k ( V ) , A k ( V )), where m is the maximal ideal of O n . The k -th Yau number is the dimension of L k ( V ) which we denote as λ k ( V ). In particular, L 0 ( V ) is exactly the Yau algebra, i.e., L 0 ( V ) = L ( V ) , λ 0 ( V ) = λ ( V ). These numbers λ k ( V ) are new numerical analytic invariants of singularities. In this paper we obtain the weak Torelli-type theorems of simple elliptic singularities using Lie algebras L 1 ( V ) and L 2 ( V ). We shall also characterize the simple singularities completely using L 1 ( V ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信