{"title":"Hörmander双参数Besov空间中最优正则性的傅里叶乘数定理","authors":"Jiao Chen, Liang Huang, Guozhen Lu","doi":"10.4310/mrl.2021.v28.n4.a4","DOIUrl":null,"url":null,"abstract":"The main aim of this paper to establish a bi-parameter version of a theorem of Baernstein and Sawyer [1] on boundedness of Fourier multipliers on one-parameter Hardy spaces H p ( R n ) which improves an earlier result of Calder´on and Torchinsky [2]. More pre-cisely, we prove the boundedness of the bi-parameter Fourier multiplier operators on the Lebesgue spaces L p ( R n 1 × R n 2 ) (1 < p < ∞ ) and bi-parameter Hardy spaces H p ( R n 1 × R n 2 ) (0 < p ≤ 1) with optimal regularity for the multiplier being in the bi-parameter Besov spaces B ( n 12 , n 22 ) 2 , 1 ( R n 1 × R n 2 ) and B ( s 1 ,s 2 ) 2 ,q ( R n 1 × R n 2 ). The Besov regularity assumption is clearly weaker than the assumption of the Sobolev regularity. Thus our results sharpen the known H¨ormander multiplier theorem for the bi-parameter Fourier multipliers using the Sobolev regularity in the same spirit as Baernstein and Sawyer improved the result of Calder´on and Torchinsky. Our method is differential from the one used by Baernstein and Sawyer in the one-parameter setting. We employ the bi-parameter Littlewood-Paley-Stein theory and atomic decomposition for the bi-parameter Hardy spaces H p ( R n 1 × R n 2 ) (0 < p ≤ 1) to establish our main result (Theorem 1.6). Moreover, the bi-parameter nature involves much more subtlety in our situation where atoms are supported on arbitrary open sets instead of rectangles.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces\",\"authors\":\"Jiao Chen, Liang Huang, Guozhen Lu\",\"doi\":\"10.4310/mrl.2021.v28.n4.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this paper to establish a bi-parameter version of a theorem of Baernstein and Sawyer [1] on boundedness of Fourier multipliers on one-parameter Hardy spaces H p ( R n ) which improves an earlier result of Calder´on and Torchinsky [2]. More pre-cisely, we prove the boundedness of the bi-parameter Fourier multiplier operators on the Lebesgue spaces L p ( R n 1 × R n 2 ) (1 < p < ∞ ) and bi-parameter Hardy spaces H p ( R n 1 × R n 2 ) (0 < p ≤ 1) with optimal regularity for the multiplier being in the bi-parameter Besov spaces B ( n 12 , n 22 ) 2 , 1 ( R n 1 × R n 2 ) and B ( s 1 ,s 2 ) 2 ,q ( R n 1 × R n 2 ). The Besov regularity assumption is clearly weaker than the assumption of the Sobolev regularity. Thus our results sharpen the known H¨ormander multiplier theorem for the bi-parameter Fourier multipliers using the Sobolev regularity in the same spirit as Baernstein and Sawyer improved the result of Calder´on and Torchinsky. Our method is differential from the one used by Baernstein and Sawyer in the one-parameter setting. We employ the bi-parameter Littlewood-Paley-Stein theory and atomic decomposition for the bi-parameter Hardy spaces H p ( R n 1 × R n 2 ) (0 < p ≤ 1) to establish our main result (Theorem 1.6). Moreover, the bi-parameter nature involves much more subtlety in our situation where atoms are supported on arbitrary open sets instead of rectangles.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2021.v28.n4.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2021.v28.n4.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
本文的主要目的是建立Baernstein和Sawyer[1]关于单参数Hardy空间H p (R n)上傅里叶乘子有界性定理的双参数版本,它改进了Calder´on和Torchinsky[1]先前的结果。更pre-cisely,我们证明了有界性bi-parameter傅里叶乘数运营商的勒贝格空间L p (R n 1×R n 2) (1 < p <∞)和bi-parameter哈代空间H p (R n 1×R n 2) (0 < p≤1)优化规律的乘数是bi-parameter Besov空间B (n 12日22)2、1 (R n 1×R n 2)和B(1,年代2)2,问(R n 1×R n 2)。Besov正则性假设明显弱于Sobolev正则性假设。因此,我们的结果锐化了已知的双参数傅里叶乘子的H¨ormander乘子定理,使用Sobolev正则性,就像Baernstein和Sawyer改进了Calder ' on和Torchinsky的结果一样。我们的方法不同于Baernstein和Sawyer在单参数设置中使用的方法。我们利用双参数littlewood - paly - stein理论和双参数Hardy空间hp (rn1 × rn2) (0 < p≤1)的原子分解来建立我们的主要结果(定理1.6)。此外,在我们的情况下,双参数的性质涉及到更多的微妙之处,其中原子被支持在任意开集而不是矩形上。
Hörmander Fourier multiplier theorems with optimal regularity in bi-parameter Besov spaces
The main aim of this paper to establish a bi-parameter version of a theorem of Baernstein and Sawyer [1] on boundedness of Fourier multipliers on one-parameter Hardy spaces H p ( R n ) which improves an earlier result of Calder´on and Torchinsky [2]. More pre-cisely, we prove the boundedness of the bi-parameter Fourier multiplier operators on the Lebesgue spaces L p ( R n 1 × R n 2 ) (1 < p < ∞ ) and bi-parameter Hardy spaces H p ( R n 1 × R n 2 ) (0 < p ≤ 1) with optimal regularity for the multiplier being in the bi-parameter Besov spaces B ( n 12 , n 22 ) 2 , 1 ( R n 1 × R n 2 ) and B ( s 1 ,s 2 ) 2 ,q ( R n 1 × R n 2 ). The Besov regularity assumption is clearly weaker than the assumption of the Sobolev regularity. Thus our results sharpen the known H¨ormander multiplier theorem for the bi-parameter Fourier multipliers using the Sobolev regularity in the same spirit as Baernstein and Sawyer improved the result of Calder´on and Torchinsky. Our method is differential from the one used by Baernstein and Sawyer in the one-parameter setting. We employ the bi-parameter Littlewood-Paley-Stein theory and atomic decomposition for the bi-parameter Hardy spaces H p ( R n 1 × R n 2 ) (0 < p ≤ 1) to establish our main result (Theorem 1.6). Moreover, the bi-parameter nature involves much more subtlety in our situation where atoms are supported on arbitrary open sets instead of rectangles.
期刊介绍:
Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.