高维生物量与总承载力之比研究

Pub Date : 2021-01-01 DOI:10.4134/JKMS.J200538
Jun-Haeng Heo, Yeonho Kim
{"title":"高维生物量与总承载力之比研究","authors":"Jun-Haeng Heo, Yeonho Kim","doi":"10.4134/JKMS.J200538","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a reaction-diffusion logistic model. In [17], Lou observed that a heterogeneous environment with diffusion makes the total biomass greater than the total carrying capacity. Regarding the ratio of biomass to carrying capacity, Ni [10] raised a conjecture that the ratio has a upper bound depending only on the spatial dimension. For the one-dimensional case, Bai, He, and Li [1] proved that the optimal upper bound is 3. Recently, Inoue and Kuto [13] showed that the supremum of the ratio is infinity when the domain is a multi-dimensional ball. In this paper, we generalized the result of [13] to an arbitrary smooth bounded domain in Rn, n ≥ 2. We use the subsolution and super-solution method. The idea of the proof is essentially the same as the proof of [13] but we have improved the construction of sub-solutions. This is the complete answer to the conjecture of Ni.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ON THE RATIO OF BIOMASS TO TOTAL CARRYING CAPACITY IN HIGH DIMENSIONS\",\"authors\":\"Jun-Haeng Heo, Yeonho Kim\",\"doi\":\"10.4134/JKMS.J200538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with a reaction-diffusion logistic model. In [17], Lou observed that a heterogeneous environment with diffusion makes the total biomass greater than the total carrying capacity. Regarding the ratio of biomass to carrying capacity, Ni [10] raised a conjecture that the ratio has a upper bound depending only on the spatial dimension. For the one-dimensional case, Bai, He, and Li [1] proved that the optimal upper bound is 3. Recently, Inoue and Kuto [13] showed that the supremum of the ratio is infinity when the domain is a multi-dimensional ball. In this paper, we generalized the result of [13] to an arbitrary smooth bounded domain in Rn, n ≥ 2. We use the subsolution and super-solution method. The idea of the proof is essentially the same as the proof of [13] but we have improved the construction of sub-solutions. This is the complete answer to the conjecture of Ni.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J200538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J200538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一个反应-扩散逻辑模型。在[17]中,Lou观察到具有扩散的异质环境使得总生物量大于总承载能力。对于生物量与承载能力的比值,Ni[10]提出了该比值仅依赖于空间维度有上界的猜想。对于一维情况,Bai, He, and Li[1]证明了最优上界为3。最近,Inoue和Kuto[13]证明了当域是一个多维球时,该比值的上极值为无穷大。本文将[13]的结果推广到Rn, n≥2中的任意光滑有界区域。我们采用了亚解法和超解法。证明的思想本质上与[13]的证明相同,但我们改进了子解的构造。这就是Ni猜想的完整答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON THE RATIO OF BIOMASS TO TOTAL CARRYING CAPACITY IN HIGH DIMENSIONS
This paper is concerned with a reaction-diffusion logistic model. In [17], Lou observed that a heterogeneous environment with diffusion makes the total biomass greater than the total carrying capacity. Regarding the ratio of biomass to carrying capacity, Ni [10] raised a conjecture that the ratio has a upper bound depending only on the spatial dimension. For the one-dimensional case, Bai, He, and Li [1] proved that the optimal upper bound is 3. Recently, Inoue and Kuto [13] showed that the supremum of the ratio is infinity when the domain is a multi-dimensional ball. In this paper, we generalized the result of [13] to an arbitrary smooth bounded domain in Rn, n ≥ 2. We use the subsolution and super-solution method. The idea of the proof is essentially the same as the proof of [13] but we have improved the construction of sub-solutions. This is the complete answer to the conjecture of Ni.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信