{"title":"一类具有临界非线性的schrÖdinger-poisson-kirchhoff型问题的基态变符号解","authors":"Aixia Qian, M. Zhang","doi":"10.4134/JKMS.J200497","DOIUrl":null,"url":null,"abstract":"In the present paper, we are concerned with the existence of ground state sign-changing solutions for the following SchrödingerPoisson-Kirchhoff system − (1+b ∫ R3 |∇u|dx)4u+V (x)u+k(x)φu=λf(x)u+|u|u, in R, −4φ=k(x)u, in R, where b > 0, V (x), k(x) and f(x) are positive continuous smooth functions; 0 < λ < λ1 and λ1 is the first eigenvalue of the problem −4u + V (x)u = λf(x)u in H. With the help of the constraint variational method, we obtain that the Schrödinger-Poisson-Kirchhoff type system possesses at least one ground state sign-changing solution for all b > 0 and 0 < λ < λ1. Moreover, we prove that its energy is strictly larger than twice that of the ground state solutions of Nehari type.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"58 1","pages":"1181-1209"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GROUND STATE SIGN-CHANGING SOLUTIONS FOR A CLASS OF SCHRÖDINGER-POISSON-KIRCHHOFF TYPEPROBLEMS WITH A CRITICAL NONLINEARITY IN ℝ 3\",\"authors\":\"Aixia Qian, M. Zhang\",\"doi\":\"10.4134/JKMS.J200497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we are concerned with the existence of ground state sign-changing solutions for the following SchrödingerPoisson-Kirchhoff system − (1+b ∫ R3 |∇u|dx)4u+V (x)u+k(x)φu=λf(x)u+|u|u, in R, −4φ=k(x)u, in R, where b > 0, V (x), k(x) and f(x) are positive continuous smooth functions; 0 < λ < λ1 and λ1 is the first eigenvalue of the problem −4u + V (x)u = λf(x)u in H. With the help of the constraint variational method, we obtain that the Schrödinger-Poisson-Kirchhoff type system possesses at least one ground state sign-changing solution for all b > 0 and 0 < λ < λ1. Moreover, we prove that its energy is strictly larger than twice that of the ground state solutions of Nehari type.\",\"PeriodicalId\":49993,\"journal\":{\"name\":\"Journal of the Korean Mathematical Society\",\"volume\":\"58 1\",\"pages\":\"1181-1209\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J200497\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J200497","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
GROUND STATE SIGN-CHANGING SOLUTIONS FOR A CLASS OF SCHRÖDINGER-POISSON-KIRCHHOFF TYPEPROBLEMS WITH A CRITICAL NONLINEARITY IN ℝ 3
In the present paper, we are concerned with the existence of ground state sign-changing solutions for the following SchrödingerPoisson-Kirchhoff system − (1+b ∫ R3 |∇u|dx)4u+V (x)u+k(x)φu=λf(x)u+|u|u, in R, −4φ=k(x)u, in R, where b > 0, V (x), k(x) and f(x) are positive continuous smooth functions; 0 < λ < λ1 and λ1 is the first eigenvalue of the problem −4u + V (x)u = λf(x)u in H. With the help of the constraint variational method, we obtain that the Schrödinger-Poisson-Kirchhoff type system possesses at least one ground state sign-changing solution for all b > 0 and 0 < λ < λ1. Moreover, we prove that its energy is strictly larger than twice that of the ground state solutions of Nehari type.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).