{"title":"关于半局部klein-gordon-maxwell方程","authors":"Jongmin Han, Juhee Sohn, Yeong Seok Yoo","doi":"10.4134/JKMS.J200463","DOIUrl":null,"url":null,"abstract":"In this article, we study the Klein-Gordon-Maxwell equations arising from a semilocal gauge field model. This model describes the interaction of two complex scalar fields and one gauge field, and generalizes the classical Klein-Gordon equation coupled with the Maxwell electrodynamics. We prove that there exist infinitely many standing wave solutions for p ∈ (2, 6) which are radially symmetric. Here, p comes from the exponent of the potential of scalar fields. We also prove the nonexistence of nontrivial solutions for the critical case p = 6.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ON SEMILOCAL KLEIN-GORDON-MAXWELL EQUATIONS\",\"authors\":\"Jongmin Han, Juhee Sohn, Yeong Seok Yoo\",\"doi\":\"10.4134/JKMS.J200463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the Klein-Gordon-Maxwell equations arising from a semilocal gauge field model. This model describes the interaction of two complex scalar fields and one gauge field, and generalizes the classical Klein-Gordon equation coupled with the Maxwell electrodynamics. We prove that there exist infinitely many standing wave solutions for p ∈ (2, 6) which are radially symmetric. Here, p comes from the exponent of the potential of scalar fields. We also prove the nonexistence of nontrivial solutions for the critical case p = 6.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J200463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J200463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article, we study the Klein-Gordon-Maxwell equations arising from a semilocal gauge field model. This model describes the interaction of two complex scalar fields and one gauge field, and generalizes the classical Klein-Gordon equation coupled with the Maxwell electrodynamics. We prove that there exist infinitely many standing wave solutions for p ∈ (2, 6) which are radially symmetric. Here, p comes from the exponent of the potential of scalar fields. We also prove the nonexistence of nontrivial solutions for the critical case p = 6.