椭圆曲线的标量限制和三次扭转

Pub Date : 2021-01-01 DOI:10.4134/JKMS.J190867
Dongho Byeon, Keunyoung Jeong, N. Kim
{"title":"椭圆曲线的标量限制和三次扭转","authors":"Dongho Byeon, Keunyoung Jeong, N. Kim","doi":"10.4134/JKMS.J190867","DOIUrl":null,"url":null,"abstract":". Let K be a number field and L a finite abelian extension of K . Let E be an elliptic curve defined over K . The restriction of scalars Res LK E decomposes (up to isogeny) into abelian varieties over K Res LK E ∼ (cid:77) F ∈ S A F , where S is the set of cyclic extensions of K in L . It is known that if L is a quadratic extension, then A L is the quadratic twist of E . In this paper, we consider the case that K is a number field containing a primitive third root of unity, L = K ( 3 √ D ) is the cyclic cubic extension of K for some D ∈ K × / ( K × ) 3 , E = E a : y 2 = x 3 + a is an elliptic curve with j invariant 0 defined over K , and E Da : y 2 = x 3 + aD 2 is the cubic twist of E a . In this case, we prove A L is isogenous over K to E Da × E D 2 a and a property of the Selmer rank of A L , which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES\",\"authors\":\"Dongho Byeon, Keunyoung Jeong, N. Kim\",\"doi\":\"10.4134/JKMS.J190867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let K be a number field and L a finite abelian extension of K . Let E be an elliptic curve defined over K . The restriction of scalars Res LK E decomposes (up to isogeny) into abelian varieties over K Res LK E ∼ (cid:77) F ∈ S A F , where S is the set of cyclic extensions of K in L . It is known that if L is a quadratic extension, then A L is the quadratic twist of E . In this paper, we consider the case that K is a number field containing a primitive third root of unity, L = K ( 3 √ D ) is the cyclic cubic extension of K for some D ∈ K × / ( K × ) 3 , E = E a : y 2 = x 3 + a is an elliptic curve with j invariant 0 defined over K , and E Da : y 2 = x 3 + aD 2 is the cubic twist of E a . In this case, we prove A L is isogenous over K to E Da × E D 2 a and a property of the Selmer rank of A L , which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 设K是一个数字域,L是K的有限阿贝尔扩展。设E是一条定义在K上的椭圆曲线。标量的限制Res LK E分解为K上的阿贝尔变体Res LK E ~ (cid:77) F∈S A F,其中S是K在L中的循环扩展的集合。已知,如果L是二次扩展,则L是E的二次扭转。在这篇文章中,我们考虑的K是一个数字字段包含一个原始的第三根的团结,L = K(√3 D)的循环立方扩展的K D∈K / (K)××3,E = E: 2 y = x 3 + 0是一个j的椭圆曲线不变的定义/ K,和E Da: y = x 3 +广告2是立方扭曲的E。在这种情况下,我们证明了A L在K到E Da × E d2 A上是等齐次的,并证明了A L的Selmer秩的一个性质,它是Mazur和Rubin关于二次旋的定理的三次类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES
. Let K be a number field and L a finite abelian extension of K . Let E be an elliptic curve defined over K . The restriction of scalars Res LK E decomposes (up to isogeny) into abelian varieties over K Res LK E ∼ (cid:77) F ∈ S A F , where S is the set of cyclic extensions of K in L . It is known that if L is a quadratic extension, then A L is the quadratic twist of E . In this paper, we consider the case that K is a number field containing a primitive third root of unity, L = K ( 3 √ D ) is the cyclic cubic extension of K for some D ∈ K × / ( K × ) 3 , E = E a : y 2 = x 3 + a is an elliptic curve with j invariant 0 defined over K , and E Da : y 2 = x 3 + aD 2 is the cubic twist of E a . In this case, we prove A L is isogenous over K to E Da × E D 2 a and a property of the Selmer rank of A L , which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信