{"title":"相位热带超曲面的自然拓扑流形结构","authors":"Young Rock Kim, Mounir Nisse","doi":"10.4134/JKMS.J200132","DOIUrl":null,"url":null,"abstract":"First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (C∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin’s decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"58 1","pages":"451-471"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A natural topological manifold structure of phase tropical hypersurfaces\",\"authors\":\"Young Rock Kim, Mounir Nisse\",\"doi\":\"10.4134/JKMS.J200132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (C∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin’s decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.\",\"PeriodicalId\":49993,\"journal\":{\"name\":\"Journal of the Korean Mathematical Society\",\"volume\":\"58 1\",\"pages\":\"451-471\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J200132\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J200132","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A natural topological manifold structure of phase tropical hypersurfaces
First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (C∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin’s decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).