近环中的基性和基性

Pub Date : 2021-01-01 DOI:10.4134/JKMS.J200013
G. Wendt
{"title":"近环中的基性和基性","authors":"G. Wendt","doi":"10.4134/JKMS.J200013","DOIUrl":null,"url":null,"abstract":"In near-ring theory several different types of primitivity exist. These all imply several different types of primeness. In case of near-rings with DCCN most of the types of primeness are known to imply primitivity of a certain kind. We are able to show that also so called 1-prime nearrings imply 1-primitivity. This enables us to classify maximal ideals in near-rings with chain condition with the concept of 1-primeness which leads to further results in the structure theory of near-rings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PRIMENESS AND PRIMITIVITY IN NEAR-RINGS\",\"authors\":\"G. Wendt\",\"doi\":\"10.4134/JKMS.J200013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In near-ring theory several different types of primitivity exist. These all imply several different types of primeness. In case of near-rings with DCCN most of the types of primeness are known to imply primitivity of a certain kind. We are able to show that also so called 1-prime nearrings imply 1-primitivity. This enables us to classify maximal ideals in near-rings with chain condition with the concept of 1-primeness which leads to further results in the structure theory of near-rings.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J200013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J200013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在近环理论中存在几种不同类型的基元。这些都暗示了几种不同类型的素数。对于具有DCCN的近环,大多数类型的素数都暗示着某种类型的素数。我们可以证明,所谓的1素数近环也包含1素数。这使得我们可以用1素数的概念对具有链条件的近环上的极大理想进行分类,从而在近环结构理论中得到进一步的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
PRIMENESS AND PRIMITIVITY IN NEAR-RINGS
In near-ring theory several different types of primitivity exist. These all imply several different types of primeness. In case of near-rings with DCCN most of the types of primeness are known to imply primitivity of a certain kind. We are able to show that also so called 1-prime nearrings imply 1-primitivity. This enables us to classify maximal ideals in near-rings with chain condition with the concept of 1-primeness which leads to further results in the structure theory of near-rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信