{"title":"高斯收缩孤子上双漂移拉普拉斯算子的低阶特征值","authors":"Lingzhong Zeng","doi":"10.4134/JKMS.J190737","DOIUrl":null,"url":null,"abstract":"It may very well be difficult to prove an eigenvalue inequality of Payne-Pólya-Weinberger type for the bi-drifting Laplacian on the bounded domain of the general complete metric measure spaces. Even though we suppose that the differential operator is bi-harmonic on the standard Euclidean sphere, this problem still remains open. However, under certain condition, a general inequality for the eigenvalues of bidrifting Laplacian is established in this paper, which enables us to prove an eigenvalue inequality of Ashbaugh-Cheng-Ichikawa-Mametsuka type (which is also called an eigenvalue inequality of Payne-Pólya-Weinberger type) for the eigenvalues with lower order of bi-drifting Laplacian on the Gaussian shrinking soliton.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"9 1","pages":"1471-1484"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower order eigenvalues for the bi-drifting Laplacian on the Gaussian shrinking soliton\",\"authors\":\"Lingzhong Zeng\",\"doi\":\"10.4134/JKMS.J190737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It may very well be difficult to prove an eigenvalue inequality of Payne-Pólya-Weinberger type for the bi-drifting Laplacian on the bounded domain of the general complete metric measure spaces. Even though we suppose that the differential operator is bi-harmonic on the standard Euclidean sphere, this problem still remains open. However, under certain condition, a general inequality for the eigenvalues of bidrifting Laplacian is established in this paper, which enables us to prove an eigenvalue inequality of Ashbaugh-Cheng-Ichikawa-Mametsuka type (which is also called an eigenvalue inequality of Payne-Pólya-Weinberger type) for the eigenvalues with lower order of bi-drifting Laplacian on the Gaussian shrinking soliton.\",\"PeriodicalId\":49993,\"journal\":{\"name\":\"Journal of the Korean Mathematical Society\",\"volume\":\"9 1\",\"pages\":\"1471-1484\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190737\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190737","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lower order eigenvalues for the bi-drifting Laplacian on the Gaussian shrinking soliton
It may very well be difficult to prove an eigenvalue inequality of Payne-Pólya-Weinberger type for the bi-drifting Laplacian on the bounded domain of the general complete metric measure spaces. Even though we suppose that the differential operator is bi-harmonic on the standard Euclidean sphere, this problem still remains open. However, under certain condition, a general inequality for the eigenvalues of bidrifting Laplacian is established in this paper, which enables us to prove an eigenvalue inequality of Ashbaugh-Cheng-Ichikawa-Mametsuka type (which is also called an eigenvalue inequality of Payne-Pólya-Weinberger type) for the eigenvalues with lower order of bi-drifting Laplacian on the Gaussian shrinking soliton.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).