曲面上粗糙核奇异积分的加权L - p有界性

Pub Date : 2021-01-01 DOI:10.4134/JKMS.J190845
Ronghui Liu, Huo-xiong Wu
{"title":"曲面上粗糙核奇异积分的加权L - p有界性","authors":"Ronghui Liu, Huo-xiong Wu","doi":"10.4134/JKMS.J190845","DOIUrl":null,"url":null,"abstract":". In this paper, we prove weighted norm inequalities for rough singular integrals along surfaces with radial kernels h and sphere kernels Ω by assuming h ∈ (cid:52) γ ( R + ) and Ω ∈ WG β (S n − 1 ) for some γ > 1 and β > 1. Here Ω ∈ WG β (S n − 1 ) denotes the variant of Grafakos-Stefanov type size conditions on the unit sphere. Our results essentially improve and extend the previous weighted results for the rough singular integrals and the corresponding maximal truncated operators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEIGHTED L p -BOUNDEDNESS OF SINGULAR INTEGRALS WITH ROUGH KERNEL ASSOCIATED TO SURFACES\",\"authors\":\"Ronghui Liu, Huo-xiong Wu\",\"doi\":\"10.4134/JKMS.J190845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we prove weighted norm inequalities for rough singular integrals along surfaces with radial kernels h and sphere kernels Ω by assuming h ∈ (cid:52) γ ( R + ) and Ω ∈ WG β (S n − 1 ) for some γ > 1 and β > 1. Here Ω ∈ WG β (S n − 1 ) denotes the variant of Grafakos-Stefanov type size conditions on the unit sphere. Our results essentially improve and extend the previous weighted results for the rough singular integrals and the corresponding maximal truncated operators.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。本文通过假设h∈(cid:52) γ (R +)和Ω∈WG β (S n−1)对于某些γ > 1和β > 1,证明了沿径向核为h和球核为Ω的粗糙奇异积分的加权范数不等式。其中Ω∈WG β (S n−1)表示单位球上的Grafakos-Stefanov型尺寸条件的变体。我们的结果从本质上改进和推广了粗糙奇异积分和相应的极大截断算子的加权结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
WEIGHTED L p -BOUNDEDNESS OF SINGULAR INTEGRALS WITH ROUGH KERNEL ASSOCIATED TO SURFACES
. In this paper, we prove weighted norm inequalities for rough singular integrals along surfaces with radial kernels h and sphere kernels Ω by assuming h ∈ (cid:52) γ ( R + ) and Ω ∈ WG β (S n − 1 ) for some γ > 1 and β > 1. Here Ω ∈ WG β (S n − 1 ) denotes the variant of Grafakos-Stefanov type size conditions on the unit sphere. Our results essentially improve and extend the previous weighted results for the rough singular integrals and the corresponding maximal truncated operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信