论模块类别的可拓维度

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190681
Yeyang Peng, Tiwei Zhao
{"title":"论模块类别的可拓维度","authors":"Yeyang Peng, Tiwei Zhao","doi":"10.4134/JKMS.J190681","DOIUrl":null,"url":null,"abstract":"Let Λ be an Artin algebra and mod Λ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length of mod Λ. We give an upper bound for the extension dimension of mod Λ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of DΛ.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the extension dimension of module categories\",\"authors\":\"Yeyang Peng, Tiwei Zhao\",\"doi\":\"10.4134/JKMS.J190681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Λ be an Artin algebra and mod Λ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length of mod Λ. We give an upper bound for the extension dimension of mod Λ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of DΛ.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设Λ为一个Artin代数,并对Λ的有限生成权Λ-modules的范畴进行建模。证明了Λ的根层长度是mod Λ的根层长度的上界。根据一类简单权Λ-modules的内射维数和DΛ的根层长度,给出了mod Λ的扩展维数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the extension dimension of module categories
Let Λ be an Artin algebra and mod Λ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length of mod Λ. We give an upper bound for the extension dimension of mod Λ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of DΛ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信