{"title":"关于p [u]/ k >-循环码及其权枚举数","authors":"Maheshanand Bhaintwal, Soumak Biswas","doi":"10.4134/JKMS.J190536","DOIUrl":null,"url":null,"abstract":"In this paper we study the algebraic structure of ZpZp[u]/ 〈uk〉-cyclic codes, where uk = 0 and p is a prime. A ZpZp[u]/〈u〉-linear code of length (r + s) is an Rk-submodule of Zp × Rs k with respect to a suitable scalar multiplication, where Rk = Zp[u]/〈u〉. Such a code can also be viewed as an Rk-submodule of Zp[x]/〈x−1〉×Rk[x]/〈x−1〉. A new Gray map has been defined on Zp[u]/〈u〉. We have considered two cases for studying the algebraic structure of ZpZp[u]/〈u〉-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) 6= 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ZpZp[u]/〈u〉-linear codes. Examples have been given to construct ZpZp[u]/〈u〉-cyclic codes, through which we get codes over Zp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON ℤ p ℤ p [u]/ k >-CYCLIC CODES AND THEIR WEIGHT ENUMERATORS\",\"authors\":\"Maheshanand Bhaintwal, Soumak Biswas\",\"doi\":\"10.4134/JKMS.J190536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the algebraic structure of ZpZp[u]/ 〈uk〉-cyclic codes, where uk = 0 and p is a prime. A ZpZp[u]/〈u〉-linear code of length (r + s) is an Rk-submodule of Zp × Rs k with respect to a suitable scalar multiplication, where Rk = Zp[u]/〈u〉. Such a code can also be viewed as an Rk-submodule of Zp[x]/〈x−1〉×Rk[x]/〈x−1〉. A new Gray map has been defined on Zp[u]/〈u〉. We have considered two cases for studying the algebraic structure of ZpZp[u]/〈u〉-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) 6= 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ZpZp[u]/〈u〉-linear codes. Examples have been given to construct ZpZp[u]/〈u〉-cyclic codes, through which we get codes over Zp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文研究了ZpZp[u]/ < uk > -循环码的代数结构,其中uk = 0且p为素数。长度为(r + s)的ZpZp[u]/ < u > -线性码是Zp × Rs k关于合适标量乘法的Rk子模,其中Rk = Zp[u]/ < u >。这样的代码也可以看作是Zp[x]/ < x−1 > ×Rk[x]/ < x−1 >的rk子模块。在Zp[u]/ < u >上定义了一个新的灰色地图。考虑了两种情况下ZpZp[u]/ < u > -循环码的代数结构,并确定了这两种情况下这些码的生成多项式和最小生成集。在第一种情况下,我们考虑(r, p) = 1和(s, p) 6= 1,在第二种情况下,我们考虑(r, p) = 1和(s, p) = 1。建立了ZpZp[u]/ < u > -线性码的完全权枚举数的MacWilliams恒等式。给出了构造ZpZp[u]/ < u > -循环码的实例,并利用灰度图得到了Zp上的码。用这种方法得到了一些最优的p元码。文中还举例说明了MacWilliams恒等式的应用。
ON ℤ p ℤ p [u]/ k >-CYCLIC CODES AND THEIR WEIGHT ENUMERATORS
In this paper we study the algebraic structure of ZpZp[u]/ 〈uk〉-cyclic codes, where uk = 0 and p is a prime. A ZpZp[u]/〈u〉-linear code of length (r + s) is an Rk-submodule of Zp × Rs k with respect to a suitable scalar multiplication, where Rk = Zp[u]/〈u〉. Such a code can also be viewed as an Rk-submodule of Zp[x]/〈x−1〉×Rk[x]/〈x−1〉. A new Gray map has been defined on Zp[u]/〈u〉. We have considered two cases for studying the algebraic structure of ZpZp[u]/〈u〉-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) 6= 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ZpZp[u]/〈u〉-linear codes. Examples have been given to construct ZpZp[u]/〈u〉-cyclic codes, through which we get codes over Zp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.