{"title":"关于p [u]/ k >-循环码及其权枚举数","authors":"Maheshanand Bhaintwal, Soumak Biswas","doi":"10.4134/JKMS.J190536","DOIUrl":null,"url":null,"abstract":"In this paper we study the algebraic structure of ZpZp[u]/ 〈uk〉-cyclic codes, where uk = 0 and p is a prime. A ZpZp[u]/〈u〉-linear code of length (r + s) is an Rk-submodule of Zp × Rs k with respect to a suitable scalar multiplication, where Rk = Zp[u]/〈u〉. Such a code can also be viewed as an Rk-submodule of Zp[x]/〈x−1〉×Rk[x]/〈x−1〉. A new Gray map has been defined on Zp[u]/〈u〉. We have considered two cases for studying the algebraic structure of ZpZp[u]/〈u〉-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) 6= 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ZpZp[u]/〈u〉-linear codes. Examples have been given to construct ZpZp[u]/〈u〉-cyclic codes, through which we get codes over Zp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"58 1","pages":"571-595"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON ℤ p ℤ p [u]/ k >-CYCLIC CODES AND THEIR WEIGHT ENUMERATORS\",\"authors\":\"Maheshanand Bhaintwal, Soumak Biswas\",\"doi\":\"10.4134/JKMS.J190536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the algebraic structure of ZpZp[u]/ 〈uk〉-cyclic codes, where uk = 0 and p is a prime. A ZpZp[u]/〈u〉-linear code of length (r + s) is an Rk-submodule of Zp × Rs k with respect to a suitable scalar multiplication, where Rk = Zp[u]/〈u〉. Such a code can also be viewed as an Rk-submodule of Zp[x]/〈x−1〉×Rk[x]/〈x−1〉. A new Gray map has been defined on Zp[u]/〈u〉. We have considered two cases for studying the algebraic structure of ZpZp[u]/〈u〉-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) 6= 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ZpZp[u]/〈u〉-linear codes. Examples have been given to construct ZpZp[u]/〈u〉-cyclic codes, through which we get codes over Zp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.\",\"PeriodicalId\":49993,\"journal\":{\"name\":\"Journal of the Korean Mathematical Society\",\"volume\":\"58 1\",\"pages\":\"571-595\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190536\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190536","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
本文研究了ZpZp[u]/ < uk > -循环码的代数结构,其中uk = 0且p为素数。长度为(r + s)的ZpZp[u]/ < u > -线性码是Zp × Rs k关于合适标量乘法的Rk子模,其中Rk = Zp[u]/ < u >。这样的代码也可以看作是Zp[x]/ < x−1 > ×Rk[x]/ < x−1 >的rk子模块。在Zp[u]/ < u >上定义了一个新的灰色地图。考虑了两种情况下ZpZp[u]/ < u > -循环码的代数结构,并确定了这两种情况下这些码的生成多项式和最小生成集。在第一种情况下,我们考虑(r, p) = 1和(s, p) 6= 1,在第二种情况下,我们考虑(r, p) = 1和(s, p) = 1。建立了ZpZp[u]/ < u > -线性码的完全权枚举数的MacWilliams恒等式。给出了构造ZpZp[u]/ < u > -循环码的实例,并利用灰度图得到了Zp上的码。用这种方法得到了一些最优的p元码。文中还举例说明了MacWilliams恒等式的应用。
ON ℤ p ℤ p [u]/ k >-CYCLIC CODES AND THEIR WEIGHT ENUMERATORS
In this paper we study the algebraic structure of ZpZp[u]/ 〈uk〉-cyclic codes, where uk = 0 and p is a prime. A ZpZp[u]/〈u〉-linear code of length (r + s) is an Rk-submodule of Zp × Rs k with respect to a suitable scalar multiplication, where Rk = Zp[u]/〈u〉. Such a code can also be viewed as an Rk-submodule of Zp[x]/〈x−1〉×Rk[x]/〈x−1〉. A new Gray map has been defined on Zp[u]/〈u〉. We have considered two cases for studying the algebraic structure of ZpZp[u]/〈u〉-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) 6= 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ZpZp[u]/〈u〉-linear codes. Examples have been given to construct ZpZp[u]/〈u〉-cyclic codes, through which we get codes over Zp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).