共轭条件下揉捏矩阵的不变性

Pub Date : 2021-01-01 DOI:10.4134/JKMS.J190378
C. Gopalakrishna, Murugan Veerapazham
{"title":"共轭条件下揉捏矩阵的不变性","authors":"C. Gopalakrishna, Murugan Veerapazham","doi":"10.4134/JKMS.J190378","DOIUrl":null,"url":null,"abstract":". In the kneading theory developed by Milnor and Thurston, it is proved that the kneading matrix and the kneading determinant as- sociated with a continuous piecewise monotone map are invariant under orientation-preserving conjugacy. This paper considers the problem for orientation-reversing conjugacy and proves that the former is not an invariant while the latter is. It also presents applications of the result towards the computational complexity of kneading matrices and the classification of maps up to topological conjugacy.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INVARIANCE OF KNEADING MATRIX UNDER CONJUGACY\",\"authors\":\"C. Gopalakrishna, Murugan Veerapazham\",\"doi\":\"10.4134/JKMS.J190378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In the kneading theory developed by Milnor and Thurston, it is proved that the kneading matrix and the kneading determinant as- sociated with a continuous piecewise monotone map are invariant under orientation-preserving conjugacy. This paper considers the problem for orientation-reversing conjugacy and proves that the former is not an invariant while the latter is. It also presents applications of the result towards the computational complexity of kneading matrices and the classification of maps up to topological conjugacy.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。在Milnor和Thurston提出的揉捏理论中,证明了与连续块单调映射相关的揉捏矩阵和揉捏行列式在保向共轭条件下是不变的。研究了方向反转共轭问题,证明了方向反转共轭不是不变量,而方向反转共轭是不变量。并将所得结果应用于捏合矩阵的计算复杂度和映射的分类直至拓扑共轭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
INVARIANCE OF KNEADING MATRIX UNDER CONJUGACY
. In the kneading theory developed by Milnor and Thurston, it is proved that the kneading matrix and the kneading determinant as- sociated with a continuous piecewise monotone map are invariant under orientation-preserving conjugacy. This paper considers the problem for orientation-reversing conjugacy and proves that the former is not an invariant while the latter is. It also presents applications of the result towards the computational complexity of kneading matrices and the classification of maps up to topological conjugacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信