算子矩阵的性质

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190439
I. An, E. Ko, J. Lee
{"title":"算子矩阵的性质","authors":"I. An, E. Ko, J. Lee","doi":"10.4134/JKMS.J190439","DOIUrl":null,"url":null,"abstract":"Let S be the collection of the operator matrices ( A C Z B ) where the range of C is closed. In this paper, we study the properties of operator matrices in the class S. We first explore various local spectral relations, that is, the property (β), decomposable, and the property (C) between the operator matrices in the class S and their component operators. Moreover, we investigate Weyl and Browder type spectra of operator matrices in the class S, and as some applications, we provide the conditions for such operator matrices to satisfy a-Weyl’s theorem and a-Browder’s theorem, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PROPERTIES OF OPERATOR MATRICES\",\"authors\":\"I. An, E. Ko, J. Lee\",\"doi\":\"10.4134/JKMS.J190439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let S be the collection of the operator matrices ( A C Z B ) where the range of C is closed. In this paper, we study the properties of operator matrices in the class S. We first explore various local spectral relations, that is, the property (β), decomposable, and the property (C) between the operator matrices in the class S and their component operators. Moreover, we investigate Weyl and Browder type spectra of operator matrices in the class S, and as some applications, we provide the conditions for such operator matrices to satisfy a-Weyl’s theorem and a-Browder’s theorem, respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设S是算子矩阵(A C Z B)的集合,其中C的值域是封闭的。本文研究了S类算子矩阵的性质。首先探讨了S类算子矩阵与其组成算子之间的各种局域谱关系,即性质(β)、可分解性和性质(C)。此外,我们研究了S类算子矩阵的Weyl和Browder型谱,并作为一些应用,给出了这类算子矩阵分别满足a-Weyl定理和a-Browder定理的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
PROPERTIES OF OPERATOR MATRICES
Let S be the collection of the operator matrices ( A C Z B ) where the range of C is closed. In this paper, we study the properties of operator matrices in the class S. We first explore various local spectral relations, that is, the property (β), decomposable, and the property (C) between the operator matrices in the class S and their component operators. Moreover, we investigate Weyl and Browder type spectra of operator matrices in the class S, and as some applications, we provide the conditions for such operator matrices to satisfy a-Weyl’s theorem and a-Browder’s theorem, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信