具有无穷多个解的分数阶schrÖdinger-poisson系统

IF 0.7 4区 数学 Q2 MATHEMATICS
T. Jin, Zhipeng Yang
{"title":"具有无穷多个解的分数阶schrÖdinger-poisson系统","authors":"T. Jin, Zhipeng Yang","doi":"10.4134/JKMS.J190156","DOIUrl":null,"url":null,"abstract":". In this paper, we study the existence of infinitely many large energy solutions for the supercubic fractional Schr¨odinger-Poisson sys- tems. We consider different superlinear growth assumptions on the nonlinearity, starting from the well-know Ambrosetti-Rabinowitz type condi- tion. We obtain three different existence results in this setting by using the Fountain Theorem, all these results extend some results for semelinear Schr¨odinger-Poisson systems to the nonlocal fractional setting.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"57 1","pages":"489-506"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS WITH INFINITELY MANY SOLUTIONS\",\"authors\":\"T. Jin, Zhipeng Yang\",\"doi\":\"10.4134/JKMS.J190156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study the existence of infinitely many large energy solutions for the supercubic fractional Schr¨odinger-Poisson sys- tems. We consider different superlinear growth assumptions on the nonlinearity, starting from the well-know Ambrosetti-Rabinowitz type condi- tion. We obtain three different existence results in this setting by using the Fountain Theorem, all these results extend some results for semelinear Schr¨odinger-Poisson systems to the nonlocal fractional setting.\",\"PeriodicalId\":49993,\"journal\":{\"name\":\"Journal of the Korean Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"489-506\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190156\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190156","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

。本文研究了超立方分数阶Schr¨odinger-Poisson系统无穷多个大能量解的存在性。我们从众所周知的Ambrosetti-Rabinowitz型条件出发,考虑了非线性的不同的超线性增长假设。利用喷泉定理,在此情况下得到了三个不同的存在性结果,所有这些结果都将半线性Schr¨odinger-Poisson系统的一些结果推广到非局部分数型情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS WITH INFINITELY MANY SOLUTIONS
. In this paper, we study the existence of infinitely many large energy solutions for the supercubic fractional Schr¨odinger-Poisson sys- tems. We consider different superlinear growth assumptions on the nonlinearity, starting from the well-know Ambrosetti-Rabinowitz type condi- tion. We obtain three different existence results in this setting by using the Fountain Theorem, all these results extend some results for semelinear Schr¨odinger-Poisson systems to the nonlocal fractional setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信