分数阶sobolev空间的诺伊曼拉普拉斯算子和向量拉普拉斯算子

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190351
Seungil Kim
{"title":"分数阶sobolev空间的诺伊曼拉普拉斯算子和向量拉普拉斯算子","authors":"Seungil Kim","doi":"10.4134/JKMS.J190351","DOIUrl":null,"url":null,"abstract":". In this paper we study fractional Sobolev spaces characterized by a norm based on eigenfunction expansions. The goal of this paper is twofold. The first one is to define fractional Sobolev spaces of order − 1 ≤ s ≤ 2 equipped with a norm defined in terms of Neumann eigen- function expansions. Due to the zero Neumann trace of Neumann eigenfunctions on a boundary, fractional Sobolev spaces of order 3 / 2 ≤ s ≤ 2 characterized by the norm are the spaces of functions with zero Neumann trace on a boundary. The spaces equipped with the norm are useful for studying cross-sectional traces of solutions to the Helmholtz equation in waveguides with a homogeneous Neumann boundary condition. The sec- ond one is to define fractional Sobolev spaces of order − 1 ≤ s ≤ 1 for vector-valued functions in a simply-connected, bounded and smooth do- main in R 2 . These spaces are defined by a norm based on series expansions in terms of eigenfunctions of the vector Laplacian with boundary condi- tions of zero tangential component or zero normal component. The spaces defined by the norm are important for analyzing cross-sectional traces of time-harmonic electromagnetic fields in perfectly conducting waveguides.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"FRACTIONAL ORDER SOBOLEV SPACES FOR THE NEUMANN LAPLACIAN AND THE VECTOR LAPLACIAN\",\"authors\":\"Seungil Kim\",\"doi\":\"10.4134/JKMS.J190351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we study fractional Sobolev spaces characterized by a norm based on eigenfunction expansions. The goal of this paper is twofold. The first one is to define fractional Sobolev spaces of order − 1 ≤ s ≤ 2 equipped with a norm defined in terms of Neumann eigen- function expansions. Due to the zero Neumann trace of Neumann eigenfunctions on a boundary, fractional Sobolev spaces of order 3 / 2 ≤ s ≤ 2 characterized by the norm are the spaces of functions with zero Neumann trace on a boundary. The spaces equipped with the norm are useful for studying cross-sectional traces of solutions to the Helmholtz equation in waveguides with a homogeneous Neumann boundary condition. The sec- ond one is to define fractional Sobolev spaces of order − 1 ≤ s ≤ 1 for vector-valued functions in a simply-connected, bounded and smooth do- main in R 2 . These spaces are defined by a norm based on series expansions in terms of eigenfunctions of the vector Laplacian with boundary condi- tions of zero tangential component or zero normal component. The spaces defined by the norm are important for analyzing cross-sectional traces of time-harmonic electromagnetic fields in perfectly conducting waveguides.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

. 本文研究了基于特征函数展开式的范数表征的分数Sobolev空间。本文的目的有两个。第一个是定义阶为−1≤s≤2的分数Sobolev空间,该空间具有由Neumann特征函数展开定义的范数。由于Neumann特征函数在边界上具有零Neumann迹,因此以范数表征的3 / 2阶≤s≤2阶分数Sobolev空间是在边界上具有零Neumann迹的函数的空间。具有范数的空间对于研究齐次诺依曼边界条件下波导中亥姆霍兹方程解的横截面轨迹是有用的。第二种方法是定义r2中单连通有界光滑域上的向量值函数的阶为- 1≤s≤1的分数Sobolev空间。这些空间是由一个范数定义的,范数是基于向量拉普拉斯特征函数的级数展开,边界条件为零切向分量或零法向分量。范数所定义的空间对于分析完全导电波导中时谐电磁场的横截迹是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
FRACTIONAL ORDER SOBOLEV SPACES FOR THE NEUMANN LAPLACIAN AND THE VECTOR LAPLACIAN
. In this paper we study fractional Sobolev spaces characterized by a norm based on eigenfunction expansions. The goal of this paper is twofold. The first one is to define fractional Sobolev spaces of order − 1 ≤ s ≤ 2 equipped with a norm defined in terms of Neumann eigen- function expansions. Due to the zero Neumann trace of Neumann eigenfunctions on a boundary, fractional Sobolev spaces of order 3 / 2 ≤ s ≤ 2 characterized by the norm are the spaces of functions with zero Neumann trace on a boundary. The spaces equipped with the norm are useful for studying cross-sectional traces of solutions to the Helmholtz equation in waveguides with a homogeneous Neumann boundary condition. The sec- ond one is to define fractional Sobolev spaces of order − 1 ≤ s ≤ 1 for vector-valued functions in a simply-connected, bounded and smooth do- main in R 2 . These spaces are defined by a norm based on series expansions in terms of eigenfunctions of the vector Laplacian with boundary condi- tions of zero tangential component or zero normal component. The spaces defined by the norm are important for analyzing cross-sectional traces of time-harmonic electromagnetic fields in perfectly conducting waveguides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信