不定内积空间上可伴算子的加权摩尔-彭罗斯逆

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190306
Mengjie Qin, Qingxiang Xu, Ali Zamani
{"title":"不定内积空间上可伴算子的加权摩尔-彭罗斯逆","authors":"Mengjie Qin, Qingxiang Xu, Ali Zamani","doi":"10.4134/JKMS.J190306","DOIUrl":null,"url":null,"abstract":". Necessary and sufficient conditions are provided under which the weighted Moore–Penrose inverse A † MN exists, where A is an ad- jointable operator between Hilbert C ∗ -modules, and the weights M and N are only self-adjoint and invertible. Relationship between weighted Moore–Penrose inverses A † MN is clarified when A is fixed, whereas M and N are variable. Perturbation analysis for the weighted Moore–Penrose inverse is also provided.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"WEIGHTED MOORE-PENROSE INVERSES OF ADJOINTABLE OPERATORS ON INDEFINITE INNER-PRODUCT SPACES\",\"authors\":\"Mengjie Qin, Qingxiang Xu, Ali Zamani\",\"doi\":\"10.4134/JKMS.J190306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Necessary and sufficient conditions are provided under which the weighted Moore–Penrose inverse A † MN exists, where A is an ad- jointable operator between Hilbert C ∗ -modules, and the weights M and N are only self-adjoint and invertible. Relationship between weighted Moore–Penrose inverses A † MN is clarified when A is fixed, whereas M and N are variable. Perturbation analysis for the weighted Moore–Penrose inverse is also provided.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

. 给出了加权Moore-Penrose逆A†MN存在的充分必要条件,其中A是Hilbert C * -模之间的可合算子,且权M和权N仅自伴且可逆。当A固定时,明确了加权Moore-Penrose逆A†MN之间的关系,而M和N是可变的。给出了加权Moore-Penrose逆的摄动分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
WEIGHTED MOORE-PENROSE INVERSES OF ADJOINTABLE OPERATORS ON INDEFINITE INNER-PRODUCT SPACES
. Necessary and sufficient conditions are provided under which the weighted Moore–Penrose inverse A † MN exists, where A is an ad- jointable operator between Hilbert C ∗ -modules, and the weights M and N are only self-adjoint and invertible. Relationship between weighted Moore–Penrose inverses A † MN is clarified when A is fixed, whereas M and N are variable. Perturbation analysis for the weighted Moore–Penrose inverse is also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信