{"title":"具有张量值灵敏度的三维两物种趋化- stokes系统的全局存在性和渐近行为","authors":"B. Liu, Guoqiang Ren","doi":"10.4134/JKMS.J190028","DOIUrl":null,"url":null,"abstract":". In this paper, we deal with a two-species chemotaxis-Stokes system with Lotka-Volterra competitive kinetics under homogeneous Neu- mann boundary conditions in a general three-dimensional bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, by some L p -estimate techniques, we show that the system possesses at least one global and bounded weak solution, in addi- tion to discussing the asymptotic behavior of the solutions. Our results generalizes and improves partial previously known ones.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR IN A THREE-DIMENSIONAL TWO-SPECIES CHEMOTAXIS-STOKES SYSTEM WITH TENSOR-VALUED SENSITIVITY\",\"authors\":\"B. Liu, Guoqiang Ren\",\"doi\":\"10.4134/JKMS.J190028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we deal with a two-species chemotaxis-Stokes system with Lotka-Volterra competitive kinetics under homogeneous Neu- mann boundary conditions in a general three-dimensional bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, by some L p -estimate techniques, we show that the system possesses at least one global and bounded weak solution, in addi- tion to discussing the asymptotic behavior of the solutions. Our results generalizes and improves partial previously known ones.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR IN A THREE-DIMENSIONAL TWO-SPECIES CHEMOTAXIS-STOKES SYSTEM WITH TENSOR-VALUED SENSITIVITY
. In this paper, we deal with a two-species chemotaxis-Stokes system with Lotka-Volterra competitive kinetics under homogeneous Neu- mann boundary conditions in a general three-dimensional bounded domain with smooth boundary. Under appropriate regularity assumptions on the initial data, by some L p -estimate techniques, we show that the system possesses at least one global and bounded weak solution, in addi- tion to discussing the asymptotic behavior of the solutions. Our results generalizes and improves partial previously known ones.