具有尖锐常数的加权hardy不等式

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190266
A. Kalybay, R. Oinarov
{"title":"具有尖锐常数的加权hardy不等式","authors":"A. Kalybay, R. Oinarov","doi":"10.4134/JKMS.J190266","DOIUrl":null,"url":null,"abstract":"In the paper, we establish the validity of the weighted discrete and integral Hardy inequalities with periodic weights and find the best possible constants in these inequalities. In addition, by applying the established discrete Hardy inequality to a certain second–order difference equation, we discuss some oscillation and nonoscillation results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"WEIGHTED HARDY INEQUALITIES WITH SHARP CONSTANTS\",\"authors\":\"A. Kalybay, R. Oinarov\",\"doi\":\"10.4134/JKMS.J190266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we establish the validity of the weighted discrete and integral Hardy inequalities with periodic weights and find the best possible constants in these inequalities. In addition, by applying the established discrete Hardy inequality to a certain second–order difference equation, we discuss some oscillation and nonoscillation results.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文建立了具有周期权的加权离散和积分Hardy不等式的有效性,并找到了这些不等式的最佳可能常数。此外,将所建立的离散Hardy不等式应用于某二阶差分方程,讨论了振动和非振动的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
WEIGHTED HARDY INEQUALITIES WITH SHARP CONSTANTS
In the paper, we establish the validity of the weighted discrete and integral Hardy inequalities with periodic weights and find the best possible constants in these inequalities. In addition, by applying the established discrete Hardy inequality to a certain second–order difference equation, we discuss some oscillation and nonoscillation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信