{"title":"超几何函数中的Lehmer广义欧拉数","authors":"Rupam Barman, T. Komatsu","doi":"10.4134/JKMS.j180227","DOIUrl":null,"url":null,"abstract":". In 1935, D. H. Lehmer introduced and investigated generalized Euler numbers W n , defined by where ω is a complex root of x 2 + x +1 = 0. In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli and Euler numbers. These concepts can be generalized to the hypergeometric Bernoulli and Euler numbers by several authors, including Ohno and the second author. In this paper, we study more general numbers in terms of determinants, which involve Bernoulli, Euler and Lehmer’s generalized Euler numbers. The motivations and backgrounds of the definition are in an operator related to Graph theory. We also give several expressions and identities by Trudi’s and inversion formulae.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"LEHMER'S GENERALIZED EULER NUMBERS IN HYPERGEOMETRIC FUNCTIONS\",\"authors\":\"Rupam Barman, T. Komatsu\",\"doi\":\"10.4134/JKMS.j180227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In 1935, D. H. Lehmer introduced and investigated generalized Euler numbers W n , defined by where ω is a complex root of x 2 + x +1 = 0. In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli and Euler numbers. These concepts can be generalized to the hypergeometric Bernoulli and Euler numbers by several authors, including Ohno and the second author. In this paper, we study more general numbers in terms of determinants, which involve Bernoulli, Euler and Lehmer’s generalized Euler numbers. The motivations and backgrounds of the definition are in an operator related to Graph theory. We also give several expressions and identities by Trudi’s and inversion formulae.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.j180227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.j180227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
. 1935年,d.h. Lehmer引入并研究了广义欧拉数wn,定义为ω是x2 + x +1 = 0的复根。1875年,格莱舍给出了数的几个有趣的行列式表达式,包括伯努利数和欧拉数。这些概念可以被一些作者推广到超几何伯努利数和欧拉数,其中包括大野和第二作者。本文从行列式的角度研究了更一般的数,其中包括伯努利数、欧拉数和莱默广义欧拉数。该定义的动机和背景是与图论相关的一个算子。我们还用Trudi公式和反演公式给出了几个表达式和恒等式。
LEHMER'S GENERALIZED EULER NUMBERS IN HYPERGEOMETRIC FUNCTIONS
. In 1935, D. H. Lehmer introduced and investigated generalized Euler numbers W n , defined by where ω is a complex root of x 2 + x +1 = 0. In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli and Euler numbers. These concepts can be generalized to the hypergeometric Bernoulli and Euler numbers by several authors, including Ohno and the second author. In this paper, we study more general numbers in terms of determinants, which involve Bernoulli, Euler and Lehmer’s generalized Euler numbers. The motivations and backgrounds of the definition are in an operator related to Graph theory. We also give several expressions and identities by Trudi’s and inversion formulae.