超几何函数中的Lehmer广义欧拉数

Pub Date : 2019-01-01 DOI:10.4134/JKMS.j180227
Rupam Barman, T. Komatsu
{"title":"超几何函数中的Lehmer广义欧拉数","authors":"Rupam Barman, T. Komatsu","doi":"10.4134/JKMS.j180227","DOIUrl":null,"url":null,"abstract":". In 1935, D. H. Lehmer introduced and investigated generalized Euler numbers W n , defined by where ω is a complex root of x 2 + x +1 = 0. In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli and Euler numbers. These concepts can be generalized to the hypergeometric Bernoulli and Euler numbers by several authors, including Ohno and the second author. In this paper, we study more general numbers in terms of determinants, which involve Bernoulli, Euler and Lehmer’s generalized Euler numbers. The motivations and backgrounds of the definition are in an operator related to Graph theory. We also give several expressions and identities by Trudi’s and inversion formulae.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"LEHMER'S GENERALIZED EULER NUMBERS IN HYPERGEOMETRIC FUNCTIONS\",\"authors\":\"Rupam Barman, T. Komatsu\",\"doi\":\"10.4134/JKMS.j180227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In 1935, D. H. Lehmer introduced and investigated generalized Euler numbers W n , defined by where ω is a complex root of x 2 + x +1 = 0. In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli and Euler numbers. These concepts can be generalized to the hypergeometric Bernoulli and Euler numbers by several authors, including Ohno and the second author. In this paper, we study more general numbers in terms of determinants, which involve Bernoulli, Euler and Lehmer’s generalized Euler numbers. The motivations and backgrounds of the definition are in an operator related to Graph theory. We also give several expressions and identities by Trudi’s and inversion formulae.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.j180227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.j180227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

. 1935年,d.h. Lehmer引入并研究了广义欧拉数wn,定义为ω是x2 + x +1 = 0的复根。1875年,格莱舍给出了数的几个有趣的行列式表达式,包括伯努利数和欧拉数。这些概念可以被一些作者推广到超几何伯努利数和欧拉数,其中包括大野和第二作者。本文从行列式的角度研究了更一般的数,其中包括伯努利数、欧拉数和莱默广义欧拉数。该定义的动机和背景是与图论相关的一个算子。我们还用Trudi公式和反演公式给出了几个表达式和恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
LEHMER'S GENERALIZED EULER NUMBERS IN HYPERGEOMETRIC FUNCTIONS
. In 1935, D. H. Lehmer introduced and investigated generalized Euler numbers W n , defined by where ω is a complex root of x 2 + x +1 = 0. In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli and Euler numbers. These concepts can be generalized to the hypergeometric Bernoulli and Euler numbers by several authors, including Ohno and the second author. In this paper, we study more general numbers in terms of determinants, which involve Bernoulli, Euler and Lehmer’s generalized Euler numbers. The motivations and backgrounds of the definition are in an operator related to Graph theory. We also give several expressions and identities by Trudi’s and inversion formulae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信