schrÖdinger最大算子的估计——复杂时间长曲线

IF 0.7 4区 数学 Q2 MATHEMATICS
Yao-ming Niu, Ying Xue
{"title":"schrÖdinger最大算子的估计——复杂时间长曲线","authors":"Yao-ming Niu, Ying Xue","doi":"10.4134/JKMS.J180558","DOIUrl":null,"url":null,"abstract":". In the present paper, we give some characterization of the L 2 maximal estimate for the operator P ta,γ f (cid:0) Γ( x,t ) (cid:1) along curve with complex time, which is defined by where t,γ > 0 and a ≥ 2 , curve Γ is a function such that Γ : R × [0 , 1] → R , and satisfies H¨older’s condition of order σ and bilipschitz conditions. The authors extend the results of the Schr¨odinger type with complex time of Bailey [1] and Cho, Lee and Vargas [3] to Schr¨odinger operators along the curves.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"57 1","pages":"89-111"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ESTIMATES FOR SCHRÖDINGER MAXIMAL OPERATORSALONG CURVE WITH COMPLEX TIME\",\"authors\":\"Yao-ming Niu, Ying Xue\",\"doi\":\"10.4134/JKMS.J180558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In the present paper, we give some characterization of the L 2 maximal estimate for the operator P ta,γ f (cid:0) Γ( x,t ) (cid:1) along curve with complex time, which is defined by where t,γ > 0 and a ≥ 2 , curve Γ is a function such that Γ : R × [0 , 1] → R , and satisfies H¨older’s condition of order σ and bilipschitz conditions. The authors extend the results of the Schr¨odinger type with complex time of Bailey [1] and Cho, Lee and Vargas [3] to Schr¨odinger operators along the curves.\",\"PeriodicalId\":49993,\"journal\":{\"name\":\"Journal of the Korean Mathematical Society\",\"volume\":\"57 1\",\"pages\":\"89-111\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J180558\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J180558","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

. 本文给出了算子P ta,γ f (cid:0) Γ(x,t) (cid:1)沿复时间曲线的l2极大估计的一些刻画,该曲线定义为t,γ > 0和a≥2,曲线Γ是满足Γ: R x[0,1]→R的函数,满足H¨older的阶σ条件和bilipschitz条件。作者将Bailey[1]和Cho, Lee和Vargas[3]的复时Schr¨odinger型的结果推广到沿曲线的Schr¨odinger算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESTIMATES FOR SCHRÖDINGER MAXIMAL OPERATORSALONG CURVE WITH COMPLEX TIME
. In the present paper, we give some characterization of the L 2 maximal estimate for the operator P ta,γ f (cid:0) Γ( x,t ) (cid:1) along curve with complex time, which is defined by where t,γ > 0 and a ≥ 2 , curve Γ is a function such that Γ : R × [0 , 1] → R , and satisfies H¨older’s condition of order σ and bilipschitz conditions. The authors extend the results of the Schr¨odinger type with complex time of Bailey [1] and Cho, Lee and Vargas [3] to Schr¨odinger operators along the curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信