{"title":"在树上选两个点","authors":"Hana Kim, L. Shapiro","doi":"10.4134/JKMS.J180503","DOIUrl":null,"url":null,"abstract":"In ordered trees, two randomly chosen vertices are said to be dependent if one lies under the other. If not, we say that they are independent. We consider several classes of ordered trees with uniform updegree requirements and find the generating functions for the trees with two marked dependent/independent vertices. As a result, we compute the probability for two vertices being dependent/independent. We also count such trees by the distance between two independent vertices.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PICK TWO POINTS IN A TREE\",\"authors\":\"Hana Kim, L. Shapiro\",\"doi\":\"10.4134/JKMS.J180503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In ordered trees, two randomly chosen vertices are said to be dependent if one lies under the other. If not, we say that they are independent. We consider several classes of ordered trees with uniform updegree requirements and find the generating functions for the trees with two marked dependent/independent vertices. As a result, we compute the probability for two vertices being dependent/independent. We also count such trees by the distance between two independent vertices.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J180503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J180503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In ordered trees, two randomly chosen vertices are said to be dependent if one lies under the other. If not, we say that they are independent. We consider several classes of ordered trees with uniform updegree requirements and find the generating functions for the trees with two marked dependent/independent vertices. As a result, we compute the probability for two vertices being dependent/independent. We also count such trees by the distance between two independent vertices.