双曲四边形空间中的理想直角五边形

Pub Date : 2019-01-01 DOI:10.4134/JKMS.J180096
Young-Jin Kim, S. Tan
{"title":"双曲四边形空间中的理想直角五边形","authors":"Young-Jin Kim, S. Tan","doi":"10.4134/JKMS.J180096","DOIUrl":null,"url":null,"abstract":". An ideal right-angled pentagon in hyperbolic 4-space H 4 is a sequence of oriented geodesics ( L 1 ,...,L 5 ) such that L i intersects L i +1 , i = 1 ,..., 4, perpendicularly in H 4 and the initial point of L 1 coincides with the endpoint of L 5 in the boundary at infinity ∂ H 4 . We study the geometry of such pentagons and the various possible augmentations and prove identities for the associated quaternion half side lengths as well as other geometrically defined invariants of the configurations. As applications we look at two-generator groups (cid:104) A,B (cid:105) of isometries acting on hyperbolic 4-space such that A is parabolic, while B and AB are loxodromic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ideal right-angled pentagons in hyperbolic 4-space\",\"authors\":\"Young-Jin Kim, S. Tan\",\"doi\":\"10.4134/JKMS.J180096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". An ideal right-angled pentagon in hyperbolic 4-space H 4 is a sequence of oriented geodesics ( L 1 ,...,L 5 ) such that L i intersects L i +1 , i = 1 ,..., 4, perpendicularly in H 4 and the initial point of L 1 coincides with the endpoint of L 5 in the boundary at infinity ∂ H 4 . We study the geometry of such pentagons and the various possible augmentations and prove identities for the associated quaternion half side lengths as well as other geometrically defined invariants of the configurations. As applications we look at two-generator groups (cid:104) A,B (cid:105) of isometries acting on hyperbolic 4-space such that A is parabolic, while B and AB are loxodromic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J180096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J180096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 双曲4空间中理想的直角五边形是一个有向测地线序列(L 1,…,L 5)使得L i与L i +1相交,i = 1,…, 4,垂直于h4, l1的起始点与l5的端点在无穷远∂h4处的边界重合。我们研究了这种五边形的几何形状和各种可能的增广,并证明了相关的四元数半边长的恒等式以及构型的其他几何定义的不变量。作为应用,我们观察作用于双曲4空间的等距双生成群(cid:104) A,B (cid:105),使得A是抛物线的,而B和AB是直线的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Ideal right-angled pentagons in hyperbolic 4-space
. An ideal right-angled pentagon in hyperbolic 4-space H 4 is a sequence of oriented geodesics ( L 1 ,...,L 5 ) such that L i intersects L i +1 , i = 1 ,..., 4, perpendicularly in H 4 and the initial point of L 1 coincides with the endpoint of L 5 in the boundary at infinity ∂ H 4 . We study the geometry of such pentagons and the various possible augmentations and prove identities for the associated quaternion half side lengths as well as other geometrically defined invariants of the configurations. As applications we look at two-generator groups (cid:104) A,B (cid:105) of isometries acting on hyperbolic 4-space such that A is parabolic, while B and AB are loxodromic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信