费马大定理与正整数序列的星系

Joachim Moussounda Mouanda
{"title":"费马大定理与正整数序列的星系","authors":"Joachim Moussounda Mouanda","doi":"10.4236/ajcm.2022.121009","DOIUrl":null,"url":null,"abstract":"We construct sequences of positive integers which are solutions of the equation z . We introduce Mouanda’s choice functions which allow us to construct galaxies of sequences of positive integers. We give many examples of galaxies of numbers. We show that the equation has no integer solutions. We prove that the equation has no solutions in  . We introduce the notion of the planetary representation of a galaxy of numbers which allow us to predict the structure, laws of the universe and life in every planet system of every galaxy of the universe. We show that every multiverse contains a finite number of","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On Fermat’s Last Theorem and Galaxies of Sequences of Positive Integers\",\"authors\":\"Joachim Moussounda Mouanda\",\"doi\":\"10.4236/ajcm.2022.121009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct sequences of positive integers which are solutions of the equation z . We introduce Mouanda’s choice functions which allow us to construct galaxies of sequences of positive integers. We give many examples of galaxies of numbers. We show that the equation has no integer solutions. We prove that the equation has no solutions in  . We introduce the notion of the planetary representation of a galaxy of numbers which allow us to predict the structure, laws of the universe and life in every planet system of every galaxy of the universe. We show that every multiverse contains a finite number of\",\"PeriodicalId\":64456,\"journal\":{\"name\":\"美国计算数学期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国计算数学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2022.121009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2022.121009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们构造正整数序列,它们是方程z的解。我们引入Mouanda选择函数,它允许我们构造正整数序列的星系。我们举了很多数字星系的例子。我们证明了这个方程没有整数解。我们在中证明了方程无解。我们引入了数字星系的行星表示法的概念,使我们能够预测宇宙的结构、规律和宇宙中每个星系的每个行星系统中的生命。我们证明每个多元宇宙都包含有限数量的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fermat’s Last Theorem and Galaxies of Sequences of Positive Integers
We construct sequences of positive integers which are solutions of the equation z . We introduce Mouanda’s choice functions which allow us to construct galaxies of sequences of positive integers. We give many examples of galaxies of numbers. We show that the equation has no integer solutions. We prove that the equation has no solutions in  . We introduce the notion of the planetary representation of a galaxy of numbers which allow us to predict the structure, laws of the universe and life in every planet system of every galaxy of the universe. We show that every multiverse contains a finite number of
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
348
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信