两个变量高阶富比尼多项式

Pub Date : 2018-01-01 DOI:10.4134/JKMS.J170573
Dae San Kim, Taekyun Kim, H. Kwon, Jin-Woo Park
{"title":"两个变量高阶富比尼多项式","authors":"Dae San Kim, Taekyun Kim, H. Kwon, Jin-Woo Park","doi":"10.4134/JKMS.J170573","DOIUrl":null,"url":null,"abstract":". Some new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomilas were intro- duced recently by Kilar and Simsek ([5]) and we study the two variable Fubini polynomials as Appell polynomials whose coefficients are the Fu- bini polynomials. In this paper, we would like to utilize umbral calculus in order to study two variable higher-order Fubini polynomials. We derive some of their properties, explicit expressions and recurrence relations. In addition, we express the two variable higher-order Fubini polynomials in terms of some families of special polynomials and vice versa.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"TWO VARIABLE HIGHER-ORDER FUBINI POLYNOMIALS\",\"authors\":\"Dae San Kim, Taekyun Kim, H. Kwon, Jin-Woo Park\",\"doi\":\"10.4134/JKMS.J170573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Some new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomilas were intro- duced recently by Kilar and Simsek ([5]) and we study the two variable Fubini polynomials as Appell polynomials whose coefficients are the Fu- bini polynomials. In this paper, we would like to utilize umbral calculus in order to study two variable higher-order Fubini polynomials. We derive some of their properties, explicit expressions and recurrence relations. In addition, we express the two variable higher-order Fubini polynomials in terms of some families of special polynomials and vice versa.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J170573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J170573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

. Kilar和Simsek([5])最近引入了一类新的与apostoll - bernoulli数和多项式相关的Fubini型数和多项式,并将其作为系数为Fu- bini多项式的Appell多项式进行了研究。本文利用本影微积分来研究两变量高阶富比尼多项式。我们推导了它们的一些性质、显式表达式和递推关系。此外,我们用一些特殊多项式族来表示两变量高阶富比尼多项式,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
TWO VARIABLE HIGHER-ORDER FUBINI POLYNOMIALS
. Some new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomilas were intro- duced recently by Kilar and Simsek ([5]) and we study the two variable Fubini polynomials as Appell polynomials whose coefficients are the Fu- bini polynomials. In this paper, we would like to utilize umbral calculus in order to study two variable higher-order Fubini polynomials. We derive some of their properties, explicit expressions and recurrence relations. In addition, we express the two variable higher-order Fubini polynomials in terms of some families of special polynomials and vice versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信