Nasrin Bastani, A. Vard, Mehdi Jabalameli, Vahid Bastani
{"title":"基于时间复杂度概念的Zernike矩快速递归计算方法的理论比较","authors":"Nasrin Bastani, A. Vard, Mehdi Jabalameli, Vahid Bastani","doi":"10.4236/ajcm.2021.114020","DOIUrl":null,"url":null,"abstract":"Zernike polynomials have been used in different fields such as optics, astronomy, and digital image analysis for many years. To form these polynomials, Zernike moments are essential to be determined. One of the main issues in realizing the moments is using factorial terms in their equation which causes higher time complexity. As a solution, several methods have been presented to reduce the time complexity of these polynomials in recent years. The purpose of this research is to study several methods among the most popular recursive methods for fast Zernike computation and compare them together by a global theoretical evaluation system called worst-case time complexity. In this study, we have analyzed the selected algorithms and calculated the worst-case time complexity for each one. After that, the results are represented and explained and finally, a conclusion has been made by com-paring these criteria among the studied algorithms. According to time complexity, we have observed that although some algorithms such as Wee method and Modified Prata method were successful in having the smaller time complexities, some other approaches did not make any significant difference compared to the classical algorithm.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Theoretical Comparison among Recursive Algorithms for Fast Computation of Zernike Moments Using the Concept of Time Complexity\",\"authors\":\"Nasrin Bastani, A. Vard, Mehdi Jabalameli, Vahid Bastani\",\"doi\":\"10.4236/ajcm.2021.114020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zernike polynomials have been used in different fields such as optics, astronomy, and digital image analysis for many years. To form these polynomials, Zernike moments are essential to be determined. One of the main issues in realizing the moments is using factorial terms in their equation which causes higher time complexity. As a solution, several methods have been presented to reduce the time complexity of these polynomials in recent years. The purpose of this research is to study several methods among the most popular recursive methods for fast Zernike computation and compare them together by a global theoretical evaluation system called worst-case time complexity. In this study, we have analyzed the selected algorithms and calculated the worst-case time complexity for each one. After that, the results are represented and explained and finally, a conclusion has been made by com-paring these criteria among the studied algorithms. According to time complexity, we have observed that although some algorithms such as Wee method and Modified Prata method were successful in having the smaller time complexities, some other approaches did not make any significant difference compared to the classical algorithm.\",\"PeriodicalId\":64456,\"journal\":{\"name\":\"美国计算数学期刊(英文)\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国计算数学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2021.114020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2021.114020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Theoretical Comparison among Recursive Algorithms for Fast Computation of Zernike Moments Using the Concept of Time Complexity
Zernike polynomials have been used in different fields such as optics, astronomy, and digital image analysis for many years. To form these polynomials, Zernike moments are essential to be determined. One of the main issues in realizing the moments is using factorial terms in their equation which causes higher time complexity. As a solution, several methods have been presented to reduce the time complexity of these polynomials in recent years. The purpose of this research is to study several methods among the most popular recursive methods for fast Zernike computation and compare them together by a global theoretical evaluation system called worst-case time complexity. In this study, we have analyzed the selected algorithms and calculated the worst-case time complexity for each one. After that, the results are represented and explained and finally, a conclusion has been made by com-paring these criteria among the studied algorithms. According to time complexity, we have observed that although some algorithms such as Wee method and Modified Prata method were successful in having the smaller time complexities, some other approaches did not make any significant difference compared to the classical algorithm.