复多项式矩阵的Von Neumann不等式

Joachim Moussounda Mouanda
{"title":"复多项式矩阵的Von Neumann不等式","authors":"Joachim Moussounda Mouanda","doi":"10.4236/ajcm.2021.114019","DOIUrl":null,"url":null,"abstract":"We prove that every matrix ( ) k n F M ∈  is associated with the smallest positive integer ( ) 1 d F ≠ such that ( ) d F F ∞ is always bigger than the sum of the operator norms of the Fourier coefficients of F. We establish some inequalities for matrices of complex polynomials. In application, we show that von Neumann’s inequality holds up to the constant 2 n for matrices of the algebra ( ) k n M  .","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Von Neumann’s Inequality for Matrices of Complex Polynomials\",\"authors\":\"Joachim Moussounda Mouanda\",\"doi\":\"10.4236/ajcm.2021.114019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every matrix ( ) k n F M ∈  is associated with the smallest positive integer ( ) 1 d F ≠ such that ( ) d F F ∞ is always bigger than the sum of the operator norms of the Fourier coefficients of F. We establish some inequalities for matrices of complex polynomials. In application, we show that von Neumann’s inequality holds up to the constant 2 n for matrices of the algebra ( ) k n M  .\",\"PeriodicalId\":64456,\"journal\":{\"name\":\"美国计算数学期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国计算数学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2021.114019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2021.114019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了每一个矩阵()k n F M∈都与最小的正整数()1d F≠相关联,使得()d F F∞总是大于F的傅里叶系数的算子范数之和。在应用中,我们证明了von Neumann不等式对于代数()k n M的矩阵保持常数2n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Von Neumann’s Inequality for Matrices of Complex Polynomials
We prove that every matrix ( ) k n F M ∈  is associated with the smallest positive integer ( ) 1 d F ≠ such that ( ) d F F ∞ is always bigger than the sum of the operator norms of the Fourier coefficients of F. We establish some inequalities for matrices of complex polynomials. In application, we show that von Neumann’s inequality holds up to the constant 2 n for matrices of the algebra ( ) k n M  .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
348
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信