用韦伯函数生成以2、3、4或6为模的射线类场

Pub Date : 2018-01-01 DOI:10.4134/JKMS.J170220
H. Jung, J. Koo, D. Shin
{"title":"用韦伯函数生成以2、3、4或6为模的射线类场","authors":"H. Jung, J. Koo, D. Shin","doi":"10.4134/JKMS.J170220","DOIUrl":null,"url":null,"abstract":". Let K be an imaginary quadratic field with ring of integers O K . Let E be an elliptic curve with complex multiplication by O K , and let h E be the Weber function on E . Let N ∈ { 2 , 3 , 4 , 6 } . We show that h E alone when evaluated at a certain N -torsion point on E generates the ray class field of K modulo N O K . This would be a partial answer to the question raised by Hasse and Ramachandra.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generation of ray class fields modulo 2, 3, 4 or 6 by using the Weber function\",\"authors\":\"H. Jung, J. Koo, D. Shin\",\"doi\":\"10.4134/JKMS.J170220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let K be an imaginary quadratic field with ring of integers O K . Let E be an elliptic curve with complex multiplication by O K , and let h E be the Weber function on E . Let N ∈ { 2 , 3 , 4 , 6 } . We show that h E alone when evaluated at a certain N -torsion point on E generates the ray class field of K modulo N O K . This would be a partial answer to the question raised by Hasse and Ramachandra.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J170220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J170220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

. 设K是一个由整数O K组成的环的虚二次域。设E是一条椭圆曲线与O K的复数相乘,设E是E上的韦伯函数。设N∈{2,3,4,6}。我们证明了E在E上某个N -扭转点处单独求值会产生K模N O K的射线类场。这将是对Hasse和Ramachandra提出的问题的部分回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generation of ray class fields modulo 2, 3, 4 or 6 by using the Weber function
. Let K be an imaginary quadratic field with ring of integers O K . Let E be an elliptic curve with complex multiplication by O K , and let h E be the Weber function on E . Let N ∈ { 2 , 3 , 4 , 6 } . We show that h E alone when evaluated at a certain N -torsion point on E generates the ray class field of K modulo N O K . This would be a partial answer to the question raised by Hasse and Ramachandra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信