{"title":"由饱和原子组成的分子化合物在液相中的稳定性:应用奇偶规则和特定的液体元素周期表","authors":"G. Auvert, M. Auvert","doi":"10.4236/ojpc.2022.121001","DOIUrl":null,"url":null,"abstract":"Building on the idea that molecules in liquid phase associate into multi-mo-lecular complexes through covalent bonds, the present article focuses on the possible structures of these complexes. Saturation at atomic level is a key concept to understand where connections occur and how far molecules ag-gregate. A periodic table for liquids with saturation levels is proposed, in agreement with the even-odd rule, for both organic and inorganic elements. With the aim at reaching the most stable complexes, meaning no other chemical reactions can occur in the liquid phase, the structure of complexes resulting from liquefaction of about 30 molecules is devised. The article concludes that complexes in liquids generally assume rounded shapes of an intermediate size between gas and solid structures. It shows that saturation and covalent bonds alone can explain the specific properties of liquids. While it is generally ac-knowledged that molecular energy in gases and solids are respectively linear kinetic and vibratory, we suggest that rotatory energy dominates in liquids.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability in Liquid Phases of Molecular Compounds Composed of Saturated Atoms: Application with the Even-Odd Rule and a Specific Periodic Table for Liquids\",\"authors\":\"G. Auvert, M. Auvert\",\"doi\":\"10.4236/ojpc.2022.121001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on the idea that molecules in liquid phase associate into multi-mo-lecular complexes through covalent bonds, the present article focuses on the possible structures of these complexes. Saturation at atomic level is a key concept to understand where connections occur and how far molecules ag-gregate. A periodic table for liquids with saturation levels is proposed, in agreement with the even-odd rule, for both organic and inorganic elements. With the aim at reaching the most stable complexes, meaning no other chemical reactions can occur in the liquid phase, the structure of complexes resulting from liquefaction of about 30 molecules is devised. The article concludes that complexes in liquids generally assume rounded shapes of an intermediate size between gas and solid structures. It shows that saturation and covalent bonds alone can explain the specific properties of liquids. While it is generally ac-knowledged that molecular energy in gases and solids are respectively linear kinetic and vibratory, we suggest that rotatory energy dominates in liquids.\",\"PeriodicalId\":59839,\"journal\":{\"name\":\"物理化学期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ojpc.2022.121001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ojpc.2022.121001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability in Liquid Phases of Molecular Compounds Composed of Saturated Atoms: Application with the Even-Odd Rule and a Specific Periodic Table for Liquids
Building on the idea that molecules in liquid phase associate into multi-mo-lecular complexes through covalent bonds, the present article focuses on the possible structures of these complexes. Saturation at atomic level is a key concept to understand where connections occur and how far molecules ag-gregate. A periodic table for liquids with saturation levels is proposed, in agreement with the even-odd rule, for both organic and inorganic elements. With the aim at reaching the most stable complexes, meaning no other chemical reactions can occur in the liquid phase, the structure of complexes resulting from liquefaction of about 30 molecules is devised. The article concludes that complexes in liquids generally assume rounded shapes of an intermediate size between gas and solid structures. It shows that saturation and covalent bonds alone can explain the specific properties of liquids. While it is generally ac-knowledged that molecular energy in gases and solids are respectively linear kinetic and vibratory, we suggest that rotatory energy dominates in liquids.