{"title":"β-氨基酸构象能和溶剂效应的理论研究","authors":"Victor F. Waingeh, F. Ngassa, Jie Song","doi":"10.4236/OJPC.2015.54013","DOIUrl":null,"url":null,"abstract":"The conformations of four β-amino acids in a model peptide environment were investigated using Hartree-Fock (HF) and density functional theory (DFT) methods in gas phase and with solvation. Initial structures were obtained by varying dihedral angles in increments of 45° in the range 0° - 360°. Stable geometries were optimized at both levels of theory with the correlation consistent double-zeta basis set with polarization functions (cc-pVDZ). The results suggest that solvation generally stabilizes the conformations relative to the gas phase and that intramolecular hydrogen bonding may play an important role in the stability of the conformations. The β3 structures, in which the R-group of the amino acid is located on the carbon atom next to the N-terminus, are somewhat more stable relative to each other than the β2 structures which have the R-group on the carbon next to the carbonyl.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"05 1","pages":"122-131"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Theoretical Study of β-Amino Acid Conformational Energies and Solvent Effect\",\"authors\":\"Victor F. Waingeh, F. Ngassa, Jie Song\",\"doi\":\"10.4236/OJPC.2015.54013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conformations of four β-amino acids in a model peptide environment were investigated using Hartree-Fock (HF) and density functional theory (DFT) methods in gas phase and with solvation. Initial structures were obtained by varying dihedral angles in increments of 45° in the range 0° - 360°. Stable geometries were optimized at both levels of theory with the correlation consistent double-zeta basis set with polarization functions (cc-pVDZ). The results suggest that solvation generally stabilizes the conformations relative to the gas phase and that intramolecular hydrogen bonding may play an important role in the stability of the conformations. The β3 structures, in which the R-group of the amino acid is located on the carbon atom next to the N-terminus, are somewhat more stable relative to each other than the β2 structures which have the R-group on the carbon next to the carbonyl.\",\"PeriodicalId\":59839,\"journal\":{\"name\":\"物理化学期刊(英文)\",\"volume\":\"05 1\",\"pages\":\"122-131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJPC.2015.54013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJPC.2015.54013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Theoretical Study of β-Amino Acid Conformational Energies and Solvent Effect
The conformations of four β-amino acids in a model peptide environment were investigated using Hartree-Fock (HF) and density functional theory (DFT) methods in gas phase and with solvation. Initial structures were obtained by varying dihedral angles in increments of 45° in the range 0° - 360°. Stable geometries were optimized at both levels of theory with the correlation consistent double-zeta basis set with polarization functions (cc-pVDZ). The results suggest that solvation generally stabilizes the conformations relative to the gas phase and that intramolecular hydrogen bonding may play an important role in the stability of the conformations. The β3 structures, in which the R-group of the amino acid is located on the carbon atom next to the N-terminus, are somewhat more stable relative to each other than the β2 structures which have the R-group on the carbon next to the carbonyl.