{"title":"具有温度梯度的毫米尺度液滴在固体表面的迁移:模拟研究","authors":"Jingyuan Zheng","doi":"10.4236/mme.2020.103004","DOIUrl":null,"url":null,"abstract":"In this paper, we established a time-dependent model that investigates the migration behavior of a millimeter-scale liquid droplet on a solid surface with temperature gradient. Both fluid mechanics and heat transfer are incorporated in the model. The Navier-Stokes equation is employed both inside and outside the droplet. Size variation is observed in the transient simulation. Results show that the velocity of the migration is about 1.7 mm/s under a temperature gradient of 30 K/mm. The model is consistent with results with previous literatures.","PeriodicalId":69007,"journal":{"name":"现代机械工程(英文)","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Millimeter-Scale Liquid Droplet Migration on Solid Surface with Temperature Gradient: A Simulation Investigation\",\"authors\":\"Jingyuan Zheng\",\"doi\":\"10.4236/mme.2020.103004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we established a time-dependent model that investigates the migration behavior of a millimeter-scale liquid droplet on a solid surface with temperature gradient. Both fluid mechanics and heat transfer are incorporated in the model. The Navier-Stokes equation is employed both inside and outside the droplet. Size variation is observed in the transient simulation. Results show that the velocity of the migration is about 1.7 mm/s under a temperature gradient of 30 K/mm. The model is consistent with results with previous literatures.\",\"PeriodicalId\":69007,\"journal\":{\"name\":\"现代机械工程(英文)\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代机械工程(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/mme.2020.103004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代机械工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/mme.2020.103004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Millimeter-Scale Liquid Droplet Migration on Solid Surface with Temperature Gradient: A Simulation Investigation
In this paper, we established a time-dependent model that investigates the migration behavior of a millimeter-scale liquid droplet on a solid surface with temperature gradient. Both fluid mechanics and heat transfer are incorporated in the model. The Navier-Stokes equation is employed both inside and outside the droplet. Size variation is observed in the transient simulation. Results show that the velocity of the migration is about 1.7 mm/s under a temperature gradient of 30 K/mm. The model is consistent with results with previous literatures.