具有温度梯度的毫米尺度液滴在固体表面的迁移:模拟研究

Jingyuan Zheng
{"title":"具有温度梯度的毫米尺度液滴在固体表面的迁移:模拟研究","authors":"Jingyuan Zheng","doi":"10.4236/mme.2020.103004","DOIUrl":null,"url":null,"abstract":"In this paper, we established a time-dependent model that investigates the migration behavior of a millimeter-scale liquid droplet on a solid surface with temperature gradient. Both fluid mechanics and heat transfer are incorporated in the model. The Navier-Stokes equation is employed both inside and outside the droplet. Size variation is observed in the transient simulation. Results show that the velocity of the migration is about 1.7 mm/s under a temperature gradient of 30 K/mm. The model is consistent with results with previous literatures.","PeriodicalId":69007,"journal":{"name":"现代机械工程(英文)","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Millimeter-Scale Liquid Droplet Migration on Solid Surface with Temperature Gradient: A Simulation Investigation\",\"authors\":\"Jingyuan Zheng\",\"doi\":\"10.4236/mme.2020.103004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we established a time-dependent model that investigates the migration behavior of a millimeter-scale liquid droplet on a solid surface with temperature gradient. Both fluid mechanics and heat transfer are incorporated in the model. The Navier-Stokes equation is employed both inside and outside the droplet. Size variation is observed in the transient simulation. Results show that the velocity of the migration is about 1.7 mm/s under a temperature gradient of 30 K/mm. The model is consistent with results with previous literatures.\",\"PeriodicalId\":69007,\"journal\":{\"name\":\"现代机械工程(英文)\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代机械工程(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/mme.2020.103004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代机械工程(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/mme.2020.103004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们建立了一个时间依赖模型来研究具有温度梯度的毫米尺度液滴在固体表面上的迁移行为。流体力学和传热都被纳入模型。Navier-Stokes方程在液滴内部和外部都被应用。在瞬态模拟中观察到尺寸的变化。结果表明,在温度梯度为30 K/mm时,迁移速度约为1.7 mm/s。该模型与文献结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Millimeter-Scale Liquid Droplet Migration on Solid Surface with Temperature Gradient: A Simulation Investigation
In this paper, we established a time-dependent model that investigates the migration behavior of a millimeter-scale liquid droplet on a solid surface with temperature gradient. Both fluid mechanics and heat transfer are incorporated in the model. The Navier-Stokes equation is employed both inside and outside the droplet. Size variation is observed in the transient simulation. Results show that the velocity of the migration is about 1.7 mm/s under a temperature gradient of 30 K/mm. The model is consistent with results with previous literatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
115
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信