具有动态边界条件的Peng-Robinson状态方程的SAV有限元法

IF 1.5 4区 工程技术 Q2 MATHEMATICS, APPLIED
C. Yao, Zhaoyue Du null, Lei Yang
{"title":"具有动态边界条件的Peng-Robinson状态方程的SAV有限元法","authors":"C. Yao, Zhaoyue Du null, Lei Yang","doi":"10.4208/aamm.oa-2021-0216","DOIUrl":null,"url":null,"abstract":". In this paper, the Peng-Robinson equation of state with dynamic boundary conditions is discussed, which considers the interactions with solid walls. At first, the model is introduced and the regularization method on the nonlinear term is adopted. Next, The scalar auxiliary variable (SAV) method in temporal and finite element method in spatial are used to handle the Peng-Robinson equation of state. Then, the energy dissipation law of the numerical method is obtained. Also, we acquire the convergence of the discrete SAV finite element method (FEM). Finally, a numerical example is provided to confirm the theoretical result.","PeriodicalId":54384,"journal":{"name":"Advances in Applied Mathematics and Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAV Finite Element Method for the Peng-Robinson Equation of State with Dynamic Boundary Conditions\",\"authors\":\"C. Yao, Zhaoyue Du null, Lei Yang\",\"doi\":\"10.4208/aamm.oa-2021-0216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, the Peng-Robinson equation of state with dynamic boundary conditions is discussed, which considers the interactions with solid walls. At first, the model is introduced and the regularization method on the nonlinear term is adopted. Next, The scalar auxiliary variable (SAV) method in temporal and finite element method in spatial are used to handle the Peng-Robinson equation of state. Then, the energy dissipation law of the numerical method is obtained. Also, we acquire the convergence of the discrete SAV finite element method (FEM). Finally, a numerical example is provided to confirm the theoretical result.\",\"PeriodicalId\":54384,\"journal\":{\"name\":\"Advances in Applied Mathematics and Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4208/aamm.oa-2021-0216\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4208/aamm.oa-2021-0216","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

. 本文讨论了考虑与固体壁相互作用的具有动态边界条件的Peng-Robinson状态方程。首先对模型进行了介绍,并对非线性项进行了正则化处理。其次,在时间上采用标量辅助变量法(SAV),在空间上采用有限元法处理Peng-Robinson状态方程。然后,得到数值方法的能量耗散规律。同时,得到了离散SAV有限元法的收敛性。最后通过数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAV Finite Element Method for the Peng-Robinson Equation of State with Dynamic Boundary Conditions
. In this paper, the Peng-Robinson equation of state with dynamic boundary conditions is discussed, which considers the interactions with solid walls. At first, the model is introduced and the regularization method on the nonlinear term is adopted. Next, The scalar auxiliary variable (SAV) method in temporal and finite element method in spatial are used to handle the Peng-Robinson equation of state. Then, the energy dissipation law of the numerical method is obtained. Also, we acquire the convergence of the discrete SAV finite element method (FEM). Finally, a numerical example is provided to confirm the theoretical result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics and Mechanics
Advances in Applied Mathematics and Mechanics MATHEMATICS, APPLIED-MECHANICS
CiteScore
2.60
自引率
7.10%
发文量
65
审稿时长
6 months
期刊介绍: Advances in Applied Mathematics and Mechanics (AAMM) provides a fast communication platform among researchers using mathematics as a tool for solving problems in mechanics and engineering, with particular emphasis in the integration of theory and applications. To cover as wide audiences as possible, abstract or axiomatic mathematics is not encouraged. Innovative numerical analysis, numerical methods, and interdisciplinary applications are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信