{"title":"具有动态边界条件的Peng-Robinson状态方程的SAV有限元法","authors":"C. Yao, Zhaoyue Du null, Lei Yang","doi":"10.4208/aamm.oa-2021-0216","DOIUrl":null,"url":null,"abstract":". In this paper, the Peng-Robinson equation of state with dynamic boundary conditions is discussed, which considers the interactions with solid walls. At first, the model is introduced and the regularization method on the nonlinear term is adopted. Next, The scalar auxiliary variable (SAV) method in temporal and finite element method in spatial are used to handle the Peng-Robinson equation of state. Then, the energy dissipation law of the numerical method is obtained. Also, we acquire the convergence of the discrete SAV finite element method (FEM). Finally, a numerical example is provided to confirm the theoretical result.","PeriodicalId":54384,"journal":{"name":"Advances in Applied Mathematics and Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAV Finite Element Method for the Peng-Robinson Equation of State with Dynamic Boundary Conditions\",\"authors\":\"C. Yao, Zhaoyue Du null, Lei Yang\",\"doi\":\"10.4208/aamm.oa-2021-0216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, the Peng-Robinson equation of state with dynamic boundary conditions is discussed, which considers the interactions with solid walls. At first, the model is introduced and the regularization method on the nonlinear term is adopted. Next, The scalar auxiliary variable (SAV) method in temporal and finite element method in spatial are used to handle the Peng-Robinson equation of state. Then, the energy dissipation law of the numerical method is obtained. Also, we acquire the convergence of the discrete SAV finite element method (FEM). Finally, a numerical example is provided to confirm the theoretical result.\",\"PeriodicalId\":54384,\"journal\":{\"name\":\"Advances in Applied Mathematics and Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4208/aamm.oa-2021-0216\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4208/aamm.oa-2021-0216","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
SAV Finite Element Method for the Peng-Robinson Equation of State with Dynamic Boundary Conditions
. In this paper, the Peng-Robinson equation of state with dynamic boundary conditions is discussed, which considers the interactions with solid walls. At first, the model is introduced and the regularization method on the nonlinear term is adopted. Next, The scalar auxiliary variable (SAV) method in temporal and finite element method in spatial are used to handle the Peng-Robinson equation of state. Then, the energy dissipation law of the numerical method is obtained. Also, we acquire the convergence of the discrete SAV finite element method (FEM). Finally, a numerical example is provided to confirm the theoretical result.
期刊介绍:
Advances in Applied Mathematics and Mechanics (AAMM) provides a fast communication platform among researchers using mathematics as a tool for solving problems in mechanics and engineering, with particular emphasis in the integration of theory and applications. To cover as wide audiences as possible, abstract or axiomatic mathematics is not encouraged. Innovative numerical analysis, numerical methods, and interdisciplinary applications are particularly welcome.