{"title":"保守性Allen-Cahn方程的四阶保结构方法","authors":"Xiaowei Chen, Xu Qian null, Songhe Song","doi":"10.4208/aamm.oa-2021-0325","DOIUrl":null,"url":null,"abstract":". We propose a class of up to fourth-order maximum-principle-preserving and mass-conserving schemes for the conservative Allen-Cahn equation equipped with a non-local Lagrange multiplier. Based on the second-order finite-difference semi-discretization in the spatial direction, the integrating factor Runge-Kutta schemes are applied in the temporal direction. Theoretical analysis indicates that the proposed schemes conserve mass and preserve the maximum principle under reasonable time step-size restriction, which is independent of the space step size. Finally, the theoretical analysis is verified by several numerical examples.","PeriodicalId":54384,"journal":{"name":"Advances in Applied Mathematics and Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fourth-Order Structure-Preserving Method for the Conservative Allen-Cahn Equation\",\"authors\":\"Xiaowei Chen, Xu Qian null, Songhe Song\",\"doi\":\"10.4208/aamm.oa-2021-0325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We propose a class of up to fourth-order maximum-principle-preserving and mass-conserving schemes for the conservative Allen-Cahn equation equipped with a non-local Lagrange multiplier. Based on the second-order finite-difference semi-discretization in the spatial direction, the integrating factor Runge-Kutta schemes are applied in the temporal direction. Theoretical analysis indicates that the proposed schemes conserve mass and preserve the maximum principle under reasonable time step-size restriction, which is independent of the space step size. Finally, the theoretical analysis is verified by several numerical examples.\",\"PeriodicalId\":54384,\"journal\":{\"name\":\"Advances in Applied Mathematics and Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4208/aamm.oa-2021-0325\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4208/aamm.oa-2021-0325","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Fourth-Order Structure-Preserving Method for the Conservative Allen-Cahn Equation
. We propose a class of up to fourth-order maximum-principle-preserving and mass-conserving schemes for the conservative Allen-Cahn equation equipped with a non-local Lagrange multiplier. Based on the second-order finite-difference semi-discretization in the spatial direction, the integrating factor Runge-Kutta schemes are applied in the temporal direction. Theoretical analysis indicates that the proposed schemes conserve mass and preserve the maximum principle under reasonable time step-size restriction, which is independent of the space step size. Finally, the theoretical analysis is verified by several numerical examples.
期刊介绍:
Advances in Applied Mathematics and Mechanics (AAMM) provides a fast communication platform among researchers using mathematics as a tool for solving problems in mechanics and engineering, with particular emphasis in the integration of theory and applications. To cover as wide audiences as possible, abstract or axiomatic mathematics is not encouraged. Innovative numerical analysis, numerical methods, and interdisciplinary applications are particularly welcome.