Wang Kong, Zhenying Hong, Guangwei Yuan null, Z. Sheng
{"title":"畸变网格扩散方程九点格式的保极值校正","authors":"Wang Kong, Zhenying Hong, Guangwei Yuan null, Z. Sheng","doi":"10.4208/aamm.oa-2021-0280","DOIUrl":null,"url":null,"abstract":". In this paper, we construct a new cell-centered nonlinear finite volume scheme that preserves the extremum principle for heterogeneous anisotropic diffusion equation on distorted meshes. We introduce a new nonlinear approach to construct the conservative flux, that is, a linear second order flux is firstly given and a nonlinear conservative flux is then constructed by using an adaptive method and a nonlinear weighted method. Our new scheme does not need to use the convex combination of the cell-center unknowns to approximate the auxiliary unknowns, so it can deal with the problem with general discontinuous coefficients. Numerical results show that our new scheme performs more robust than some existing schemes on highly distorted meshes.","PeriodicalId":54384,"journal":{"name":"Advances in Applied Mathematics and Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extremum-Preserving Correction of the Nine-Point Scheme for Diffusion Equation on Distorted Meshes\",\"authors\":\"Wang Kong, Zhenying Hong, Guangwei Yuan null, Z. Sheng\",\"doi\":\"10.4208/aamm.oa-2021-0280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we construct a new cell-centered nonlinear finite volume scheme that preserves the extremum principle for heterogeneous anisotropic diffusion equation on distorted meshes. We introduce a new nonlinear approach to construct the conservative flux, that is, a linear second order flux is firstly given and a nonlinear conservative flux is then constructed by using an adaptive method and a nonlinear weighted method. Our new scheme does not need to use the convex combination of the cell-center unknowns to approximate the auxiliary unknowns, so it can deal with the problem with general discontinuous coefficients. Numerical results show that our new scheme performs more robust than some existing schemes on highly distorted meshes.\",\"PeriodicalId\":54384,\"journal\":{\"name\":\"Advances in Applied Mathematics and Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4208/aamm.oa-2021-0280\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4208/aamm.oa-2021-0280","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Extremum-Preserving Correction of the Nine-Point Scheme for Diffusion Equation on Distorted Meshes
. In this paper, we construct a new cell-centered nonlinear finite volume scheme that preserves the extremum principle for heterogeneous anisotropic diffusion equation on distorted meshes. We introduce a new nonlinear approach to construct the conservative flux, that is, a linear second order flux is firstly given and a nonlinear conservative flux is then constructed by using an adaptive method and a nonlinear weighted method. Our new scheme does not need to use the convex combination of the cell-center unknowns to approximate the auxiliary unknowns, so it can deal with the problem with general discontinuous coefficients. Numerical results show that our new scheme performs more robust than some existing schemes on highly distorted meshes.
期刊介绍:
Advances in Applied Mathematics and Mechanics (AAMM) provides a fast communication platform among researchers using mathematics as a tool for solving problems in mechanics and engineering, with particular emphasis in the integration of theory and applications. To cover as wide audiences as possible, abstract or axiomatic mathematics is not encouraged. Innovative numerical analysis, numerical methods, and interdisciplinary applications are particularly welcome.