几种经典非线性Schrödinger/ Gross-Pitaevskii方程有限差分格式的守恒律和误差估计

IF 0.6 Q4 MATHEMATICS, APPLIED
Tingjun Wang, Wen Zhang, Chen-Yi Zhu
{"title":"几种经典非线性Schrödinger/ Gross-Pitaevskii方程有限差分格式的守恒律和误差估计","authors":"Tingjun Wang, Wen Zhang, Chen-Yi Zhu","doi":"10.4310/MAA.2018.V25.N2.A2","DOIUrl":null,"url":null,"abstract":". In this paper, several classical implicit finite difference schemes for solving the nonlin- ear Schr¨odinger/Gross Pitaevskii (NLS/GP) equation are revisited and analyzed. By introducing a kind of energy functionals, these schemes are proved to preserve the total energy in the discrete sense. Besides the standard energy method, a ‘cut-off’ technique and a ‘lifting’ technique are adopted to establish the optimal point-wise error estimates without any restriction on the grid ratios. Numerical results are reported to verify the theoretical analysis.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"25 1","pages":"97-116"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservation laws and error estimates of several classical finite difference schemes for the nonlinear Schrödinger/Gross–Pitaevskii equation\",\"authors\":\"Tingjun Wang, Wen Zhang, Chen-Yi Zhu\",\"doi\":\"10.4310/MAA.2018.V25.N2.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, several classical implicit finite difference schemes for solving the nonlin- ear Schr¨odinger/Gross Pitaevskii (NLS/GP) equation are revisited and analyzed. By introducing a kind of energy functionals, these schemes are proved to preserve the total energy in the discrete sense. Besides the standard energy method, a ‘cut-off’ technique and a ‘lifting’ technique are adopted to establish the optimal point-wise error estimates without any restriction on the grid ratios. Numerical results are reported to verify the theoretical analysis.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"25 1\",\"pages\":\"97-116\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2018.V25.N2.A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2018.V25.N2.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

。本文对求解非线性耳Schr¨odinger/Gross Pitaevskii (NLS/GP)方程的几种经典隐式有限差分格式进行了回顾和分析。通过引入一种能量泛函,证明了这些方案在离散意义上保持了总能量。除标准能量法外,还采用了“截止”技术和“提升”技术,在不受网格比例限制的情况下,建立了最优的逐点误差估计。数值结果验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conservation laws and error estimates of several classical finite difference schemes for the nonlinear Schrödinger/Gross–Pitaevskii equation
. In this paper, several classical implicit finite difference schemes for solving the nonlin- ear Schr¨odinger/Gross Pitaevskii (NLS/GP) equation are revisited and analyzed. By introducing a kind of energy functionals, these schemes are proved to preserve the total energy in the discrete sense. Besides the standard energy method, a ‘cut-off’ technique and a ‘lifting’ technique are adopted to establish the optimal point-wise error estimates without any restriction on the grid ratios. Numerical results are reported to verify the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信