由对偶Wulff形状的仿射微扰构造的Wulff形状单参数族的Hausdorff距离极限

IF 0.6 Q4 MATHEMATICS, APPLIED
Huhe Han, T. Nishimura
{"title":"由对偶Wulff形状的仿射微扰构造的Wulff形状单参数族的Hausdorff距离极限","authors":"Huhe Han, T. Nishimura","doi":"10.4310/maa.2018.v25.n4.a1","DOIUrl":null,"url":null,"abstract":". It is known that the Wulff construction is an isometry. In this paper we provide an alternative proof of this fact. Moreover, according to this result we investigate the limit of the Hausdorff distance for one-parameter families of Wulff shapes constructed by affine perturbations of dual Wulff shapes.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"11 1","pages":"277-290"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit of the Hausdorff distance for one-parameter families of Wulff shapes constructed by affine perturbations of dual Wulff shapes\",\"authors\":\"Huhe Han, T. Nishimura\",\"doi\":\"10.4310/maa.2018.v25.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". It is known that the Wulff construction is an isometry. In this paper we provide an alternative proof of this fact. Moreover, according to this result we investigate the limit of the Hausdorff distance for one-parameter families of Wulff shapes constructed by affine perturbations of dual Wulff shapes.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"11 1\",\"pages\":\"277-290\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2018.v25.n4.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2018.v25.n4.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

。众所周知,伍尔夫构造是等距的。在本文中,我们提供了这一事实的另一种证明。此外,根据这一结果,我们研究了由对偶Wulff形状的仿射微扰构造的单参数Wulff形状族的Hausdorff距离的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit of the Hausdorff distance for one-parameter families of Wulff shapes constructed by affine perturbations of dual Wulff shapes
. It is known that the Wulff construction is an isometry. In this paper we provide an alternative proof of this fact. Moreover, according to this result we investigate the limit of the Hausdorff distance for one-parameter families of Wulff shapes constructed by affine perturbations of dual Wulff shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信