多点的解析不变量

IF 0.6 Q4 MATHEMATICS, APPLIED
A. Aleksandrov
{"title":"多点的解析不变量","authors":"A. Aleksandrov","doi":"10.4310/maa.2018.v25.n3.a1","DOIUrl":null,"url":null,"abstract":". We develop an original approach in computing analytic invariants of zero-dimensional singularities, which is based essentially on the study of properties of differential forms and the cotangent complex of multiple points. Among other things, we consider a series of specific tasks and problems for zero-dimensional complete intersections, graded and gradient singularities, including the computation of cotangent homology and cohomology for certain types of such singularities. We also examine the unimodular families of gradient zero-dimensional singularities, compile an adjacency diagram and compute the primitive ideals of these families. Finally, we briefly discuss the problem of nonexistence of negative weighted derivations, some relationships between the Milnor and Tjurina numbers and estimates of these invariants in the case of zero-dimensional complete intersections.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"25 1","pages":"167-204"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytic invariants of multiple points\",\"authors\":\"A. Aleksandrov\",\"doi\":\"10.4310/maa.2018.v25.n3.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We develop an original approach in computing analytic invariants of zero-dimensional singularities, which is based essentially on the study of properties of differential forms and the cotangent complex of multiple points. Among other things, we consider a series of specific tasks and problems for zero-dimensional complete intersections, graded and gradient singularities, including the computation of cotangent homology and cohomology for certain types of such singularities. We also examine the unimodular families of gradient zero-dimensional singularities, compile an adjacency diagram and compute the primitive ideals of these families. Finally, we briefly discuss the problem of nonexistence of negative weighted derivations, some relationships between the Milnor and Tjurina numbers and estimates of these invariants in the case of zero-dimensional complete intersections.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"25 1\",\"pages\":\"167-204\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2018.v25.n3.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2018.v25.n3.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

. 我们提出了一种计算零维奇异点解析不变量的新颖方法,该方法主要基于对微分形式和多点的余切复性质的研究。在其他方面,我们考虑了一系列的具体任务和问题的零维完全交,梯度和梯度奇点,包括计算的余切同调和上同调的某些类型的这类奇点。我们还研究了梯度零维奇点的非模族,编制了邻接图,并计算了这些族的原始理想。最后,我们简要地讨论了负加权导数的不存在性问题、Milnor数和Tjurina数之间的一些关系以及零维完全交点情况下这些不变量的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic invariants of multiple points
. We develop an original approach in computing analytic invariants of zero-dimensional singularities, which is based essentially on the study of properties of differential forms and the cotangent complex of multiple points. Among other things, we consider a series of specific tasks and problems for zero-dimensional complete intersections, graded and gradient singularities, including the computation of cotangent homology and cohomology for certain types of such singularities. We also examine the unimodular families of gradient zero-dimensional singularities, compile an adjacency diagram and compute the primitive ideals of these families. Finally, we briefly discuss the problem of nonexistence of negative weighted derivations, some relationships between the Milnor and Tjurina numbers and estimates of these invariants in the case of zero-dimensional complete intersections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信