具有非对称势的非线性耦合Schrödinger方程的无限多同步解

IF 0.6 Q4 MATHEMATICS, APPLIED
Chunhua Wang, Jing Zhou
{"title":"具有非对称势的非线性耦合Schrödinger方程的无限多同步解","authors":"Chunhua Wang, Jing Zhou","doi":"10.4310/maa.2020.v27.n3.a2","DOIUrl":null,"url":null,"abstract":". We study a nonlinearly coupled Schr¨odinger equations in R N (2 ≤ N < 6) . Assume that the potentials in the system are continuous functions satisfying some suitable decay assumptions but without any symmetric properties, and the parameters in the system satisfy some restrictions. Applying the Liapunov-Schmidt reduction methods twice and combining localized energy method, we prove that the problem has infinitely many positive synchronized solutions.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many synchronized solutions to a nonlinearly coupled Schrödinger equations with non-symmetric potentials\",\"authors\":\"Chunhua Wang, Jing Zhou\",\"doi\":\"10.4310/maa.2020.v27.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study a nonlinearly coupled Schr¨odinger equations in R N (2 ≤ N < 6) . Assume that the potentials in the system are continuous functions satisfying some suitable decay assumptions but without any symmetric properties, and the parameters in the system satisfy some restrictions. Applying the Liapunov-Schmidt reduction methods twice and combining localized energy method, we prove that the problem has infinitely many positive synchronized solutions.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/maa.2020.v27.n3.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/maa.2020.v27.n3.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

。研究了R N(2≤N < 6)中的非线性耦合Schr¨odinger方程。假设系统中的势是连续函数,满足一定的衰减假设,但不具有任何对称性质,系统中的参数满足一定的限制条件。利用两次Liapunov-Schmidt约简方法,结合局域能量法,证明了该问题具有无穷多个正同步解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many synchronized solutions to a nonlinearly coupled Schrödinger equations with non-symmetric potentials
. We study a nonlinearly coupled Schr¨odinger equations in R N (2 ≤ N < 6) . Assume that the potentials in the system are continuous functions satisfying some suitable decay assumptions but without any symmetric properties, and the parameters in the system satisfy some restrictions. Applying the Liapunov-Schmidt reduction methods twice and combining localized energy method, we prove that the problem has infinitely many positive synchronized solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信