非相对论和准相对论分子系统的开壳、自旋极化Kohn-Sham方程的最小解

IF 0.6 Q4 MATHEMATICS, APPLIED
C. Argáez, M. Melgaard
{"title":"非相对论和准相对论分子系统的开壳、自旋极化Kohn-Sham方程的最小解","authors":"C. Argáez, M. Melgaard","doi":"10.4310/MAA.2016.V23.N3.A4","DOIUrl":null,"url":null,"abstract":"We study the open-shell, spin-polarized Kohn-Sham models for non-relativistic and quasi-relativistic N-electron Coulomb systems, that is, systems where the kinetic energy of the electrons is given by either the non-relativistic operator −Δxn or the quasi-relativistic operator √−α−²Δxn + α−4 − α−². For standard and extended Kohn-Sham models in the local density approximation, we prove existence of a ground state (or minimizer) provided that the total charge Ztot of K nuclei is greater than N − 1. For the quasi-relativistic setting we also need that Ztot is smaller than a critical charge Zc = 2α−¹π−¹.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"23 1","pages":"269-292"},"PeriodicalIF":0.6000,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizers for open-shell, spin-polarised Kohn–Sham equations for non-relativistic and quasi-relativistic molecular systems\",\"authors\":\"C. Argáez, M. Melgaard\",\"doi\":\"10.4310/MAA.2016.V23.N3.A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the open-shell, spin-polarized Kohn-Sham models for non-relativistic and quasi-relativistic N-electron Coulomb systems, that is, systems where the kinetic energy of the electrons is given by either the non-relativistic operator −Δxn or the quasi-relativistic operator √−α−²Δxn + α−4 − α−². For standard and extended Kohn-Sham models in the local density approximation, we prove existence of a ground state (or minimizer) provided that the total charge Ztot of K nuclei is greater than N − 1. For the quasi-relativistic setting we also need that Ztot is smaller than a critical charge Zc = 2α−¹π−¹.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"23 1\",\"pages\":\"269-292\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2016.V23.N3.A4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2016.V23.N3.A4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了非相对论和准相对论n电子库仑系统的开壳、自旋极化Kohn-Sham模型,即电子的动能由非相对论算子- Δxn或准相对论算子√- α−²Δxn + α−4−α−²给出的系统。对于局部密度近似下的标准和扩展Kohn-Sham模型,我们证明了在K原子核的总电荷Ztot大于N−1的条件下,存在基态(或极小值)。对于准相对论性的设定,我们还需要Ztot小于临界电荷Zc = 2α−¹π−¹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimizers for open-shell, spin-polarised Kohn–Sham equations for non-relativistic and quasi-relativistic molecular systems
We study the open-shell, spin-polarized Kohn-Sham models for non-relativistic and quasi-relativistic N-electron Coulomb systems, that is, systems where the kinetic energy of the electrons is given by either the non-relativistic operator −Δxn or the quasi-relativistic operator √−α−²Δxn + α−4 − α−². For standard and extended Kohn-Sham models in the local density approximation, we prove existence of a ground state (or minimizer) provided that the total charge Ztot of K nuclei is greater than N − 1. For the quasi-relativistic setting we also need that Ztot is smaller than a critical charge Zc = 2α−¹π−¹.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信