{"title":"欧拉-柯特维格方程的相对论版本","authors":"H. Freistühler","doi":"10.4310/MAA.2018.V25.N1.A1","DOIUrl":null,"url":null,"abstract":". Starting from a variational interpretation of enthalpy, this paper formulates a rela- tivistically covariant version of the Euler-Korteweg equations of fluid dynamics. The system has a canonical Lagrangian and converges in the non-relativistic limit to Dunn and Serrin’s formulation.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"25 1","pages":"1-12"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A relativistic version of the Euler–Korteweg equations\",\"authors\":\"H. Freistühler\",\"doi\":\"10.4310/MAA.2018.V25.N1.A1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Starting from a variational interpretation of enthalpy, this paper formulates a rela- tivistically covariant version of the Euler-Korteweg equations of fluid dynamics. The system has a canonical Lagrangian and converges in the non-relativistic limit to Dunn and Serrin’s formulation.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"25 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2018.V25.N1.A1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2018.V25.N1.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A relativistic version of the Euler–Korteweg equations
. Starting from a variational interpretation of enthalpy, this paper formulates a rela- tivistically covariant version of the Euler-Korteweg equations of fluid dynamics. The system has a canonical Lagrangian and converges in the non-relativistic limit to Dunn and Serrin’s formulation.