欧拉-柯特维格方程的相对论版本

IF 0.6 Q4 MATHEMATICS, APPLIED
H. Freistühler
{"title":"欧拉-柯特维格方程的相对论版本","authors":"H. Freistühler","doi":"10.4310/MAA.2018.V25.N1.A1","DOIUrl":null,"url":null,"abstract":". Starting from a variational interpretation of enthalpy, this paper formulates a rela- tivistically covariant version of the Euler-Korteweg equations of fluid dynamics. The system has a canonical Lagrangian and converges in the non-relativistic limit to Dunn and Serrin’s formulation.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"25 1","pages":"1-12"},"PeriodicalIF":0.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A relativistic version of the Euler–Korteweg equations\",\"authors\":\"H. Freistühler\",\"doi\":\"10.4310/MAA.2018.V25.N1.A1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Starting from a variational interpretation of enthalpy, this paper formulates a rela- tivistically covariant version of the Euler-Korteweg equations of fluid dynamics. The system has a canonical Lagrangian and converges in the non-relativistic limit to Dunn and Serrin’s formulation.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"25 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2018.V25.N1.A1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2018.V25.N1.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

. 本文从焓的变分解释出发,建立了流体力学欧拉-柯尔特维格方程的相对能动协变版本。该系统具有正则拉格朗日,并收敛于Dunn和Serrin公式的非相对论性极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A relativistic version of the Euler–Korteweg equations
. Starting from a variational interpretation of enthalpy, this paper formulates a rela- tivistically covariant version of the Euler-Korteweg equations of fluid dynamics. The system has a canonical Lagrangian and converges in the non-relativistic limit to Dunn and Serrin’s formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信