{"title":"一阶非线性PDE解的微局部光滑性","authors":"Abraha Hailu","doi":"10.4310/MAA.2017.V24.N3.A2","DOIUrl":null,"url":null,"abstract":". We study the microlocal smoothness of C 2 solutions u of the first-order nonlinear partial differential equation x where f ( x,t,ζ 0 ,ζ ) is a complex-valued function which is C ∞ in all the variables ( x,t,ζ 0 ,ζ ) and holomorphic in the variables ( ζ 0 ,ζ ) . If the solution u is C 2 , σ ∈ Char( L u ) and 1 √− 1 σ ([ L u , ¯ L u ]) < 0 , then we show that σ / ∈ WF ( u ) . Here WF ( u ) denotes the C ∞ wave front set of u and Char( L u ) denotes the characteristic set of the linearized operator","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"24 1","pages":"383-406"},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Microlocal Smoothness of Solutions of First Order Nonlinear PDE\",\"authors\":\"Abraha Hailu\",\"doi\":\"10.4310/MAA.2017.V24.N3.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study the microlocal smoothness of C 2 solutions u of the first-order nonlinear partial differential equation x where f ( x,t,ζ 0 ,ζ ) is a complex-valued function which is C ∞ in all the variables ( x,t,ζ 0 ,ζ ) and holomorphic in the variables ( ζ 0 ,ζ ) . If the solution u is C 2 , σ ∈ Char( L u ) and 1 √− 1 σ ([ L u , ¯ L u ]) < 0 , then we show that σ / ∈ WF ( u ) . Here WF ( u ) denotes the C ∞ wave front set of u and Char( L u ) denotes the characteristic set of the linearized operator\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"24 1\",\"pages\":\"383-406\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2017.V24.N3.A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2017.V24.N3.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On Microlocal Smoothness of Solutions of First Order Nonlinear PDE
. We study the microlocal smoothness of C 2 solutions u of the first-order nonlinear partial differential equation x where f ( x,t,ζ 0 ,ζ ) is a complex-valued function which is C ∞ in all the variables ( x,t,ζ 0 ,ζ ) and holomorphic in the variables ( ζ 0 ,ζ ) . If the solution u is C 2 , σ ∈ Char( L u ) and 1 √− 1 σ ([ L u , ¯ L u ]) < 0 , then we show that σ / ∈ WF ( u ) . Here WF ( u ) denotes the C ∞ wave front set of u and Char( L u ) denotes the characteristic set of the linearized operator