一阶非线性PDE解的微局部光滑性

IF 0.6 Q4 MATHEMATICS, APPLIED
Abraha Hailu
{"title":"一阶非线性PDE解的微局部光滑性","authors":"Abraha Hailu","doi":"10.4310/MAA.2017.V24.N3.A2","DOIUrl":null,"url":null,"abstract":". We study the microlocal smoothness of C 2 solutions u of the first-order nonlinear partial differential equation x where f ( x,t,ζ 0 ,ζ ) is a complex-valued function which is C ∞ in all the variables ( x,t,ζ 0 ,ζ ) and holomorphic in the variables ( ζ 0 ,ζ ) . If the solution u is C 2 , σ ∈ Char( L u ) and 1 √− 1 σ ([ L u , ¯ L u ]) < 0 , then we show that σ / ∈ WF ( u ) . Here WF ( u ) denotes the C ∞ wave front set of u and Char( L u ) denotes the characteristic set of the linearized operator","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"24 1","pages":"383-406"},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Microlocal Smoothness of Solutions of First Order Nonlinear PDE\",\"authors\":\"Abraha Hailu\",\"doi\":\"10.4310/MAA.2017.V24.N3.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study the microlocal smoothness of C 2 solutions u of the first-order nonlinear partial differential equation x where f ( x,t,ζ 0 ,ζ ) is a complex-valued function which is C ∞ in all the variables ( x,t,ζ 0 ,ζ ) and holomorphic in the variables ( ζ 0 ,ζ ) . If the solution u is C 2 , σ ∈ Char( L u ) and 1 √− 1 σ ([ L u , ¯ L u ]) < 0 , then we show that σ / ∈ WF ( u ) . Here WF ( u ) denotes the C ∞ wave front set of u and Char( L u ) denotes the characteristic set of the linearized operator\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"24 1\",\"pages\":\"383-406\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2017.V24.N3.A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2017.V24.N3.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

. 研究了一阶非线性偏微分方程x的2c解u的微局部光滑性,其中f (x,t,ζ 0,ζ)是一个复值函数,在所有变量(x,t,ζ 0,ζ)上都是C∞,在变量(ζ 0,ζ)上是全纯的。若解u为c2, σ∈Char(L u)且1√- 1 σ ([L u,¯L u]) < 0,则证明σ /∈WF (u)。其中WF (u)表示u的C∞波前集,Char(L u)表示线性化算子的特征集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Microlocal Smoothness of Solutions of First Order Nonlinear PDE
. We study the microlocal smoothness of C 2 solutions u of the first-order nonlinear partial differential equation x where f ( x,t,ζ 0 ,ζ ) is a complex-valued function which is C ∞ in all the variables ( x,t,ζ 0 ,ζ ) and holomorphic in the variables ( ζ 0 ,ζ ) . If the solution u is C 2 , σ ∈ Char( L u ) and 1 √− 1 σ ([ L u , ¯ L u ]) < 0 , then we show that σ / ∈ WF ( u ) . Here WF ( u ) denotes the C ∞ wave front set of u and Char( L u ) denotes the characteristic set of the linearized operator
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信