法向曲面变形稳定嵌入的内在方法

IF 0.6 Q4 MATHEMATICS, APPLIED
A. Harris
{"title":"法向曲面变形稳定嵌入的内在方法","authors":"A. Harris","doi":"10.4310/MAA.2017.v24.n2.a4","DOIUrl":null,"url":null,"abstract":"We introduce the notion of involutive Kodaira-Spencer deformations of the regular part X0 of a normal surface singularity, which form a subspace of the analytic cohomology H(X0, T X0). Examples of involutive deformations for which the Stein completion does not embed in a complex Euclidean space of stable dimension are in fact well-known. Under the assumption that X0 admits a Kähler metric with L-curvature, we show that unstable deformations are avoided if the holomorphic functions which determine an embedding of the central fibre are correspondingly deformed into functions which can be uniformly bounded on compact subsets.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"24 1","pages":"277-292"},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intrinsic approach to stable embedding of normal surface deformations\",\"authors\":\"A. Harris\",\"doi\":\"10.4310/MAA.2017.v24.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of involutive Kodaira-Spencer deformations of the regular part X0 of a normal surface singularity, which form a subspace of the analytic cohomology H(X0, T X0). Examples of involutive deformations for which the Stein completion does not embed in a complex Euclidean space of stable dimension are in fact well-known. Under the assumption that X0 admits a Kähler metric with L-curvature, we show that unstable deformations are avoided if the holomorphic functions which determine an embedding of the central fibre are correspondingly deformed into functions which can be uniformly bounded on compact subsets.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"24 1\",\"pages\":\"277-292\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2017.v24.n2.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2017.v24.n2.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了法曲面奇异点的正则部分X0的对合Kodaira-Spencer变形的概念,它形成了解析上同调H(X0, tx0)的子空间。斯坦因补全不嵌入稳定维数的复欧几里得空间的对合变形的例子实际上是众所周知的。在假设X0允许一个具有l曲率的Kähler度量下,我们证明了如果将决定中心纤维嵌入的全纯函数相应地变形为可在紧子集上一致有界的函数,则可以避免不稳定变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intrinsic approach to stable embedding of normal surface deformations
We introduce the notion of involutive Kodaira-Spencer deformations of the regular part X0 of a normal surface singularity, which form a subspace of the analytic cohomology H(X0, T X0). Examples of involutive deformations for which the Stein completion does not embed in a complex Euclidean space of stable dimension are in fact well-known. Under the assumption that X0 admits a Kähler metric with L-curvature, we show that unstable deformations are avoided if the holomorphic functions which determine an embedding of the central fibre are correspondingly deformed into functions which can be uniformly bounded on compact subsets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信