零维梯度奇点

IF 0.6 Q4 MATHEMATICS, APPLIED
A. Aleksandrov, Hui-Qin Zuo, Henry Laufer
{"title":"零维梯度奇点","authors":"A. Aleksandrov, Hui-Qin Zuo, Henry Laufer","doi":"10.4310/MAA.2017.V24.N2.A1","DOIUrl":null,"url":null,"abstract":". We discuss an approach to the problem of classifying zero-dimensional gradient quasihomogeneous singularities using simple properties of deformation theory. As an example, we enumerate all such singularities with modularity ℘ = 0 and with Milnor number not greater than 12. We also compute normal forms and monomial vector-bases of the first cotangent homology and cohomology modules, the corresponding Poincar´e polynomials, inner modality, inner modularity, primitive ideals, etc.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Zero-dimensional gradient singularities\",\"authors\":\"A. Aleksandrov, Hui-Qin Zuo, Henry Laufer\",\"doi\":\"10.4310/MAA.2017.V24.N2.A1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We discuss an approach to the problem of classifying zero-dimensional gradient quasihomogeneous singularities using simple properties of deformation theory. As an example, we enumerate all such singularities with modularity ℘ = 0 and with Milnor number not greater than 12. We also compute normal forms and monomial vector-bases of the first cotangent homology and cohomology modules, the corresponding Poincar´e polynomials, inner modality, inner modularity, primitive ideals, etc.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2017.V24.N2.A1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2017.V24.N2.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

. 利用变形理论的简单性质,讨论了零维梯度拟齐次奇异分类问题的一种方法。作为一个例子,我们列举了模块化p = 0且米尔诺数不大于12的所有奇异点。我们还计算了第一余切同调和上同调模的范式和单项式向量基,相应的庞加莱多项式,内模态,内模性,原始理想等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-dimensional gradient singularities
. We discuss an approach to the problem of classifying zero-dimensional gradient quasihomogeneous singularities using simple properties of deformation theory. As an example, we enumerate all such singularities with modularity ℘ = 0 and with Milnor number not greater than 12. We also compute normal forms and monomial vector-bases of the first cotangent homology and cohomology modules, the corresponding Poincar´e polynomials, inner modality, inner modularity, primitive ideals, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信