关于紧复流形的Milnor数的Laufer公式、Rochlin签名定理和解析欧拉特性的评述

IF 0.6 Q4 MATHEMATICS, APPLIED
J. Seade
{"title":"关于紧复流形的Milnor数的Laufer公式、Rochlin签名定理和解析欧拉特性的评述","authors":"J. Seade","doi":"10.4310/MAA.2017.V24.N1.A8","DOIUrl":null,"url":null,"abstract":"Introduction. There are several classical approaches to studying the geometry and topology of isolated singularities (V, 0) defined by a holomorphic map-germ (C, 0) f → (C, 0). One of these is by looking at resolutions of the singularity, π : Ṽ → V . Another is by considering the non-critical levels of the function f and the way how these degenerate to the special fiber V . Laufer’s formula for the Milnor number establishes a beautiful bridge between these two points of view. The formula says that if n = 3, then one has:","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":"24 1","pages":"105-123"},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Remarks on Laufer’s formula for the Milnor number, Rochlin’s signature theorem and the analytic Euler characteristic of compact complex manifolds\",\"authors\":\"J. Seade\",\"doi\":\"10.4310/MAA.2017.V24.N1.A8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. There are several classical approaches to studying the geometry and topology of isolated singularities (V, 0) defined by a holomorphic map-germ (C, 0) f → (C, 0). One of these is by looking at resolutions of the singularity, π : Ṽ → V . Another is by considering the non-critical levels of the function f and the way how these degenerate to the special fiber V . Laufer’s formula for the Milnor number establishes a beautiful bridge between these two points of view. The formula says that if n = 3, then one has:\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":\"24 1\",\"pages\":\"105-123\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2017.V24.N1.A8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2017.V24.N1.A8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

介绍。有几种经典的方法来研究由全纯映射(C, 0) f→(C, 0)定义的孤立奇点(V, 0)的几何和拓扑。其中一种是通过观察奇点π: Ṽ→V的分辨率。另一种方法是考虑函数f的非临界能级以及它们如何退化到特殊纤维V。劳弗的米尔诺数公式在这两种观点之间建立了一座美丽的桥梁。公式说,如果n = 3,那么有:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on Laufer’s formula for the Milnor number, Rochlin’s signature theorem and the analytic Euler characteristic of compact complex manifolds
Introduction. There are several classical approaches to studying the geometry and topology of isolated singularities (V, 0) defined by a holomorphic map-germ (C, 0) f → (C, 0). One of these is by looking at resolutions of the singularity, π : Ṽ → V . Another is by considering the non-critical levels of the function f and the way how these degenerate to the special fiber V . Laufer’s formula for the Milnor number establishes a beautiful bridge between these two points of view. The formula says that if n = 3, then one has:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信