一般型法线表面的奇异性

IF 0.6 Q4 MATHEMATICS, APPLIED
K. Konno
{"title":"一般型法线表面的奇异性","authors":"K. Konno","doi":"10.4310/MAA.2017.V24.N1.A6","DOIUrl":null,"url":null,"abstract":"Koyama’s inequality for normal surface singularities gives the upper bound on the self-intersection number of the canonical cycle in terms of the arithmetic genus. For those singularities of fundamental genus two attaining the bound, a formula for computing the geometric genus is shown and the resolution dual graphs are roughly classified. In Gorenstein case, the multiplicity and the embedding dimension are also computed.","PeriodicalId":18467,"journal":{"name":"Methods and applications of analysis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Certain normal surface singularities of general type\",\"authors\":\"K. Konno\",\"doi\":\"10.4310/MAA.2017.V24.N1.A6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Koyama’s inequality for normal surface singularities gives the upper bound on the self-intersection number of the canonical cycle in terms of the arithmetic genus. For those singularities of fundamental genus two attaining the bound, a formula for computing the geometric genus is shown and the resolution dual graphs are roughly classified. In Gorenstein case, the multiplicity and the embedding dimension are also computed.\",\"PeriodicalId\":18467,\"journal\":{\"name\":\"Methods and applications of analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and applications of analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MAA.2017.V24.N1.A6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and applications of analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MAA.2017.V24.N1.A6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

小山法面奇点不等式给出了正则环的算术格自交数的上界。对于基本格2的奇异性达到界,给出了几何格的计算公式,并对分辨率对偶图进行了粗略分类。在Gorenstein情况下,还计算了多重度和嵌入维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certain normal surface singularities of general type
Koyama’s inequality for normal surface singularities gives the upper bound on the self-intersection number of the canonical cycle in terms of the arithmetic genus. For those singularities of fundamental genus two attaining the bound, a formula for computing the geometric genus is shown and the resolution dual graphs are roughly classified. In Gorenstein case, the multiplicity and the embedding dimension are also computed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and applications of analysis
Methods and applications of analysis MATHEMATICS, APPLIED-
自引率
33.30%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信