拉格朗日颤动的反常-霍奇配合物

Pub Date : 2022-01-27 DOI:10.46298/epiga.2023.9617
Junliang Shen, Qizheng Yin
{"title":"拉格朗日颤动的反常-霍奇配合物","authors":"Junliang Shen, Qizheng Yin","doi":"10.46298/epiga.2023.9617","DOIUrl":null,"url":null,"abstract":"Perverse-Hodge complexes are objects in the derived category of coherent\nsheaves obtained from Hodge modules associated with Saito's decomposition\ntheorem. We study perverse-Hodge complexes for Lagrangian fibrations and\npropose a symmetry between them. This conjectural symmetry categorifies the\n\"Perverse = Hodge\" identity of the authors and specializes to Matsushita's\ntheorem on the higher direct images of the structure sheaf. We verify our\nconjecture in several cases by making connections with variations of Hodge\nstructures, Hilbert schemes, and Looijenga-Lunts-Verbitsky Lie algebras.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perverse-Hodge complexes for Lagrangian fibrations\",\"authors\":\"Junliang Shen, Qizheng Yin\",\"doi\":\"10.46298/epiga.2023.9617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perverse-Hodge complexes are objects in the derived category of coherent\\nsheaves obtained from Hodge modules associated with Saito's decomposition\\ntheorem. We study perverse-Hodge complexes for Lagrangian fibrations and\\npropose a symmetry between them. This conjectural symmetry categorifies the\\n\\\"Perverse = Hodge\\\" identity of the authors and specializes to Matsushita's\\ntheorem on the higher direct images of the structure sheaf. We verify our\\nconjecture in several cases by making connections with variations of Hodge\\nstructures, Hilbert schemes, and Looijenga-Lunts-Verbitsky Lie algebras.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/epiga.2023.9617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.9617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

逆-霍奇配合物是由与齐藤分解定理相关的霍奇模导出的相干束派生范畴中的对象。我们研究了拉格朗日颤振的逆-霍奇配合物,并提出了它们之间的对称性。这种推测的对称性归类了作者的“反常=霍奇”身份,并专门研究了关于结构束的更高直接像的松下定理。我们通过与hodgestructure, Hilbert scheme和Looijenga-Lunts-Verbitsky Lie代数的变化建立联系,在几个情况下验证了我们的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Perverse-Hodge complexes for Lagrangian fibrations
Perverse-Hodge complexes are objects in the derived category of coherent sheaves obtained from Hodge modules associated with Saito's decomposition theorem. We study perverse-Hodge complexes for Lagrangian fibrations and propose a symmetry between them. This conjectural symmetry categorifies the "Perverse = Hodge" identity of the authors and specializes to Matsushita's theorem on the higher direct images of the structure sheaf. We verify our conjecture in several cases by making connections with variations of Hodge structures, Hilbert schemes, and Looijenga-Lunts-Verbitsky Lie algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信